{"title":"Müntz Legendre 多项式:逼近特性与应用","authors":"Tengteng Cui, Chuanju Xu","doi":"10.1090/mcom/3987","DOIUrl":null,"url":null,"abstract":"<p>The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda equals StartSet lamda 0 comma lamda 1 comma lamda 2 comma midline-horizontal-ellipsis EndSet\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Λ</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Lambda =\\{\\lambda _{0},\\lambda _{1},\\lambda _{2},\\cdots \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Λ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sequences: <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript k Baseline equals lamda\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda _{k}=\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript k Baseline equals k lamda plus q\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda _k=k\\lambda +q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\"> <mml:semantics> <mml:mi>λ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Müntz Legendre polynomials: Approximation properties and applications\",\"authors\":\"Tengteng Cui, Chuanju Xu\",\"doi\":\"10.1090/mcom/3987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Lamda equals StartSet lamda 0 comma lamda 1 comma lamda 2 comma midline-horizontal-ellipsis EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Lambda =\\\\{\\\\lambda _{0},\\\\lambda _{1},\\\\lambda _{2},\\\\cdots \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Lamda\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sequences: <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript k Baseline equals lamda\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _{k}=\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript k Baseline equals k lamda plus q\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _k=k\\\\lambda +q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\"> <mml:semantics> <mml:mi>λ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3987\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3987","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Müntz Legendre polynomials: Approximation properties and applications
The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence Λ={λ0,λ1,λ2,⋯}\Lambda =\{\lambda _{0},\lambda _{1},\lambda _{2},\cdots \}. In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of Λ\Lambda sequences: λk=λ\lambda _{k}=\lambda, and λk=kλ+q\lambda _k=k\lambda +q for some λ\lambda and qq. First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.