Müntz Legendre 多项式:逼近特性与应用

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Tengteng Cui, Chuanju Xu
{"title":"Müntz Legendre 多项式:逼近特性与应用","authors":"Tengteng Cui, Chuanju Xu","doi":"10.1090/mcom/3987","DOIUrl":null,"url":null,"abstract":"<p>The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda equals StartSet lamda 0 comma lamda 1 comma lamda 2 comma midline-horizontal-ellipsis EndSet\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Λ</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Lambda =\\{\\lambda _{0},\\lambda _{1},\\lambda _{2},\\cdots \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Λ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sequences: <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript k Baseline equals lamda\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda _{k}=\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript k Baseline equals k lamda plus q\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda _k=k\\lambda +q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\"> <mml:semantics> <mml:mi>λ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Müntz Legendre polynomials: Approximation properties and applications\",\"authors\":\"Tengteng Cui, Chuanju Xu\",\"doi\":\"10.1090/mcom/3987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Lamda equals StartSet lamda 0 comma lamda 1 comma lamda 2 comma midline-horizontal-ellipsis EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Lambda =\\\\{\\\\lambda _{0},\\\\lambda _{1},\\\\lambda _{2},\\\\cdots \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Lamda\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sequences: <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript k Baseline equals lamda\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _{k}=\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript k Baseline equals k lamda plus q\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _k=k\\\\lambda +q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\"> <mml:semantics> <mml:mi>λ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3987\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3987","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Müntz Legendre 多项式是广义正交多项式族,由与复序列Λ = { λ 0 , λ 1 , λ 2 , ⋯ } 相关的等高线积分定义。 \Lambda =\{lambda _{0},\lambda _{1},\lambda _{2},\cdots \} 。在本文中,我们对 Müntz Legendre 多项式的两个子类感兴趣。确切地说,我们从理论和数值上研究了两组Λ \Lambda 序列的 Müntz Legendre 多项式的基本近似性质:λ k = λ \lambda _{k}= \lambda ,以及 λ k = k λ + q \lambda _k=k\lambda +q ,对于某个 λ \lambda 和 q q。首先,对两个多项式子类的投影和插值误差进行了分析和数值检验,并得出了非均匀加权 Sobolev 空间中函数的一些误差估计值。然后,为了证明 Müntz 多项式的适用性,提出了一种基于 Müntz Legendre 多项式的 Galerkin 频谱方法来求解时空分微分方程。所获得的数值结果表明,即使精确解不是平滑的,所提出的方法也能带来指数级的收敛率。这与使用传统正交多项式的低阶代数收敛相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Müntz Legendre polynomials: Approximation properties and applications

The Müntz Legendre polynomials are a family of generalized orthogonal polynomials, defined by contour integral associated with a complex sequence Λ = { λ 0 , λ 1 , λ 2 , } \Lambda =\{\lambda _{0},\lambda _{1},\lambda _{2},\cdots \} . In this paper, we are interested in two subclasses of the Müntz Legendre polynomials. Precisely, we theoretically and numerically investigate the basic approximation properties of the Müntz Legendre polynomials for two sets of Λ \Lambda sequences: λ k = λ \lambda _{k}=\lambda , and λ k = k λ + q \lambda _k=k\lambda +q for some λ \lambda and q q . First, the projection and interpolation errors are analyzed and numerically tested for each of the two subclasses of polynomials, and some error estimates are derived for functions in non-uniformly weighted Sobolev spaces. Then, in order to demonstrate the applicability of the Müntz polynomials, a Galerkin spectral method based on the Müntz Legendre polynomials is proposed to solve the time-space fractional differential equation. The obtained numerical results show that the proposed method leads to an exponential convergence rate even if the exact solutions are not smooth. This is opposed to low order algebraic convergence if traditional orthogonal polynomials are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信