{"title":"通过较低的 $$L^{p}$ 估计值实现非线性准单调系统解的部分正则性","authors":"Christoph Hamburger","doi":"10.1007/s00030-024-00946-3","DOIUrl":null,"url":null,"abstract":"<p>We prove partial regularity of solutions <i>u</i> of the nonlinear quasimonotone system <span>\\({\\text {div}}A\\left( x,u,Du\\right) +B\\left( x,u,Du\\right) =0\\)</span> under natural polynomial growth of its coefficient functions <i>A</i> and <i>B</i>. We propose a new direct method based on an <span>\\(L^{p}\\)</span> estimate with low exponent <span>\\(p>1\\)</span> for a linear elliptic system with constant coefficient.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial regularity of solutions of nonlinear quasimonotone systems via a lower $$L^{p}$$ estimate\",\"authors\":\"Christoph Hamburger\",\"doi\":\"10.1007/s00030-024-00946-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove partial regularity of solutions <i>u</i> of the nonlinear quasimonotone system <span>\\\\({\\\\text {div}}A\\\\left( x,u,Du\\\\right) +B\\\\left( x,u,Du\\\\right) =0\\\\)</span> under natural polynomial growth of its coefficient functions <i>A</i> and <i>B</i>. We propose a new direct method based on an <span>\\\\(L^{p}\\\\)</span> estimate with low exponent <span>\\\\(p>1\\\\)</span> for a linear elliptic system with constant coefficient.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00946-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00946-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了在系数函数 A 和 B 的自然多项式增长下,非线性准正交系统 \({text {div}A\left( x,u,Du\right) +B\left( x,u,Du\right) =0\)的解 u 的部分正则性。我们提出了一种新的直接方法,该方法基于具有低指数 \(p>1\) 的 \(L^{p}\) 估计,适用于具有常数系数的线性椭圆系统。
Partial regularity of solutions of nonlinear quasimonotone systems via a lower $$L^{p}$$ estimate
We prove partial regularity of solutions u of the nonlinear quasimonotone system \({\text {div}}A\left( x,u,Du\right) +B\left( x,u,Du\right) =0\) under natural polynomial growth of its coefficient functions A and B. We propose a new direct method based on an \(L^{p}\) estimate with low exponent \(p>1\) for a linear elliptic system with constant coefficient.