具有密度抑制运动和逻辑源的趋化模型解的收敛速度

Wenbin Lyu, Jing Hu
{"title":"具有密度抑制运动和逻辑源的趋化模型解的收敛速度","authors":"Wenbin Lyu, Jing Hu","doi":"10.1007/s00030-024-00958-z","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with a class of parabolic-elliptic chemotaxis models with density-suppressed motility and general logistic source in an <i>n</i>-dimensional smooth bounded domain. With some conditions on the density-suppressed motility function, we show the convergence rate of solutions is exponential as time tends to infinity for such kind of models.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The convergence rate of solutions in chemotaxis models with density-suppressed motility and logistic source\",\"authors\":\"Wenbin Lyu, Jing Hu\",\"doi\":\"10.1007/s00030-024-00958-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with a class of parabolic-elliptic chemotaxis models with density-suppressed motility and general logistic source in an <i>n</i>-dimensional smooth bounded domain. With some conditions on the density-suppressed motility function, we show the convergence rate of solutions is exponential as time tends to infinity for such kind of models.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00958-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00958-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是一类在 n 维光滑有界域中具有密度抑制运动和一般逻辑源的抛物线-椭圆趋化模型。通过对密度抑制运动函数的一些条件,我们证明了这类模型的解的收敛速率随着时间趋于无穷大是指数级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The convergence rate of solutions in chemotaxis models with density-suppressed motility and logistic source

The convergence rate of solutions in chemotaxis models with density-suppressed motility and logistic source

This paper is concerned with a class of parabolic-elliptic chemotaxis models with density-suppressed motility and general logistic source in an n-dimensional smooth bounded domain. With some conditions on the density-suppressed motility function, we show the convergence rate of solutions is exponential as time tends to infinity for such kind of models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信