关于在 $$\mathbb {R}times\mathbb {T}$$ 上提出的广义 ZK 方程在能量空间中的良好提出性的说明

Luiz Gustavo Farah, Luc Molinet
{"title":"关于在 $$\\mathbb {R}times\\mathbb {T}$$ 上提出的广义 ZK 方程在能量空间中的良好提出性的说明","authors":"Luiz Gustavo Farah, Luc Molinet","doi":"10.1007/s00030-024-00964-1","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove the local well-posedness in the energy space of the <i>k</i>-generalized Zakharov–Kuznetsov equation posed on <span>\\( \\mathbb {R}\\times \\mathbb {T}\\)</span> for any power non-linearity <span>\\( k\\ge 2\\)</span>. Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the well-posedness in the energy space for the generalized ZK equation posed on $$\\\\mathbb {R}\\\\times \\\\mathbb {T}$$\",\"authors\":\"Luiz Gustavo Farah, Luc Molinet\",\"doi\":\"10.1007/s00030-024-00964-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we prove the local well-posedness in the energy space of the <i>k</i>-generalized Zakharov–Kuznetsov equation posed on <span>\\\\( \\\\mathbb {R}\\\\times \\\\mathbb {T}\\\\)</span> for any power non-linearity <span>\\\\( k\\\\ge 2\\\\)</span>. Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00964-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00964-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们证明了对于任意幂非线性 \( k\ge 2\) 的 k 广义扎哈罗夫-库兹涅佐夫方程在能量空间中的局部良好求解性。此外,我们通过证明一个尖锐的加利亚尔多-尼伦堡式不等式,在初始数据的精确小性假设下得到了全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the well-posedness in the energy space for the generalized ZK equation posed on $$\mathbb {R}\times \mathbb {T}$$

In this note, we prove the local well-posedness in the energy space of the k-generalized Zakharov–Kuznetsov equation posed on \( \mathbb {R}\times \mathbb {T}\) for any power non-linearity \( k\ge 2\). Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信