{"title":"关于在 $$\\mathbb {R}times\\mathbb {T}$$ 上提出的广义 ZK 方程在能量空间中的良好提出性的说明","authors":"Luiz Gustavo Farah, Luc Molinet","doi":"10.1007/s00030-024-00964-1","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove the local well-posedness in the energy space of the <i>k</i>-generalized Zakharov–Kuznetsov equation posed on <span>\\( \\mathbb {R}\\times \\mathbb {T}\\)</span> for any power non-linearity <span>\\( k\\ge 2\\)</span>. Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the well-posedness in the energy space for the generalized ZK equation posed on $$\\\\mathbb {R}\\\\times \\\\mathbb {T}$$\",\"authors\":\"Luiz Gustavo Farah, Luc Molinet\",\"doi\":\"10.1007/s00030-024-00964-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we prove the local well-posedness in the energy space of the <i>k</i>-generalized Zakharov–Kuznetsov equation posed on <span>\\\\( \\\\mathbb {R}\\\\times \\\\mathbb {T}\\\\)</span> for any power non-linearity <span>\\\\( k\\\\ge 2\\\\)</span>. Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00964-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00964-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本论文中,我们证明了对于任意幂非线性 \( k\ge 2\) 的 k 广义扎哈罗夫-库兹涅佐夫方程在能量空间中的局部良好求解性。此外,我们通过证明一个尖锐的加利亚尔多-尼伦堡式不等式,在初始数据的精确小性假设下得到了全局解。
A note on the well-posedness in the energy space for the generalized ZK equation posed on $$\mathbb {R}\times \mathbb {T}$$
In this note, we prove the local well-posedness in the energy space of the k-generalized Zakharov–Kuznetsov equation posed on \( \mathbb {R}\times \mathbb {T}\) for any power non-linearity \( k\ge 2\). Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.