具有双功率非线性的 NLS 耦合方程的基态

Nataliia Goloshchapova, Liliana Cely
{"title":"具有双功率非线性的 NLS 耦合方程的基态","authors":"Nataliia Goloshchapova, Liliana Cely","doi":"10.1007/s00030-024-00956-1","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of ground states (minimizers of an energy under a fixed masses constraint) for a system of coupled NLS equations with double power nonlinearities (classical and point). We prove that the presence of at least one subcritical power parameter guarantees existence of a ground state for masses below specific values. Moreover, we show that each ground state is given by a pair of strictly positive functions (up to rotation). Using the concentration-compactness approach, under certain restrictions we prove the compactness of each minimizing sequence. One of the principal peculiarities of the model is that in presence of critical power parameters existence of ground states depends on concrete mass parameters related with the optimal function for the Gagliardo–Nirenberg inequality.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground states for coupled NLS equations with double power nonlinearities\",\"authors\":\"Nataliia Goloshchapova, Liliana Cely\",\"doi\":\"10.1007/s00030-024-00956-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of ground states (minimizers of an energy under a fixed masses constraint) for a system of coupled NLS equations with double power nonlinearities (classical and point). We prove that the presence of at least one subcritical power parameter guarantees existence of a ground state for masses below specific values. Moreover, we show that each ground state is given by a pair of strictly positive functions (up to rotation). Using the concentration-compactness approach, under certain restrictions we prove the compactness of each minimizing sequence. One of the principal peculiarities of the model is that in presence of critical power parameters existence of ground states depends on concrete mass parameters related with the optimal function for the Gagliardo–Nirenberg inequality.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00956-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00956-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有双功率非线性(经典非线性和点非线性)的耦合 NLS 方程系统的基态(固定质量约束下的能量最小值)的存在性。我们证明,至少存在一个亚临界幂参数,就能保证质量低于特定值时基态的存在。此外,我们还证明了每个基态都是由一对严格的正函数给出的(直至旋转)。利用集中-紧凑性方法,在某些限制条件下,我们证明了每个最小化序列的紧凑性。该模型的一个主要特点是,在存在临界功率参数的情况下,基态的存在取决于与加利亚尔多-尼伦堡不等式最优函数相关的具体质量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground states for coupled NLS equations with double power nonlinearities

We study the existence of ground states (minimizers of an energy under a fixed masses constraint) for a system of coupled NLS equations with double power nonlinearities (classical and point). We prove that the presence of at least one subcritical power parameter guarantees existence of a ground state for masses below specific values. Moreover, we show that each ground state is given by a pair of strictly positive functions (up to rotation). Using the concentration-compactness approach, under certain restrictions we prove the compactness of each minimizing sequence. One of the principal peculiarities of the model is that in presence of critical power parameters existence of ground states depends on concrete mass parameters related with the optimal function for the Gagliardo–Nirenberg inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信