具有有界势能的非均质 NLS 方程驻波的存在性和质量浓度

Tian Tian, Jun Wang, Xiaoguang Li
{"title":"具有有界势能的非均质 NLS 方程驻波的存在性和质量浓度","authors":"Tian Tian, Jun Wang, Xiaoguang Li","doi":"10.1007/s00030-024-00969-w","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the following minimization problem </p><span>$$\\begin{aligned} e_p(M)=\\inf \\{E_p(u):u \\in H^1(\\mathbb {R}^N),\\Vert u\\Vert ^2_{L^2}=M^2 \\}, \\end{aligned}$$</span><p>where energy functional <span>\\(E_p(u)\\)</span> is defined by </p><span>$$\\begin{aligned} E_p(u)=\\Vert \\nabla u \\Vert _{L^2}^2 +\\int _{\\mathbb {R}^N} V(x)|u |^2dx -\\frac{2}{p+2} \\int _{\\mathbb {R}^N}|x |^{-h} | u|^{p+2}dx \\end{aligned}$$</span><p>and <i>V</i> is a bounded potential. For <span>\\(0&lt;p&lt; p^*:=\\frac{4-2\\,h}{N}(0&lt;h&lt;\\min \\{2,N\\})\\)</span>, it is shown that there exists a constant <span>\\(M_0\\ge 0\\)</span>, such that the minimization problem exists at least one minimizer if <span>\\(M&gt; M_0\\)</span>. When <span>\\(p=p^*,\\)</span> the minimization problem exists at least one minimizer if <span>\\(M\\in (M_{*},\\Vert Q_{p^*}\\Vert _{L^2}),\\)</span> where constant <span>\\(M_{*}\\ge 0\\)</span> and <span>\\(Q_{p^*}\\)</span> is the unique positive radial solution of <span>\\(-\\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\\)</span> and under some assumptions on <i>V</i>, there is no minimizer if <span>\\(M\\ge \\Vert Q_{p^*}\\Vert _{L^2}\\)</span>. Moreover, when <span>\\(0&lt;p&lt;p^*,\\)</span> for fixed <span>\\(M&gt; \\Vert Q_{p^*}\\Vert _{L^2}\\)</span>, we analyze the concentration behavior of minimizers as <span>\\(p \\nearrow p^* \\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and mass concentration of standing waves for inhomogeneous NLS equation with a bounded potential\",\"authors\":\"Tian Tian, Jun Wang, Xiaoguang Li\",\"doi\":\"10.1007/s00030-024-00969-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the following minimization problem </p><span>$$\\\\begin{aligned} e_p(M)=\\\\inf \\\\{E_p(u):u \\\\in H^1(\\\\mathbb {R}^N),\\\\Vert u\\\\Vert ^2_{L^2}=M^2 \\\\}, \\\\end{aligned}$$</span><p>where energy functional <span>\\\\(E_p(u)\\\\)</span> is defined by </p><span>$$\\\\begin{aligned} E_p(u)=\\\\Vert \\\\nabla u \\\\Vert _{L^2}^2 +\\\\int _{\\\\mathbb {R}^N} V(x)|u |^2dx -\\\\frac{2}{p+2} \\\\int _{\\\\mathbb {R}^N}|x |^{-h} | u|^{p+2}dx \\\\end{aligned}$$</span><p>and <i>V</i> is a bounded potential. For <span>\\\\(0&lt;p&lt; p^*:=\\\\frac{4-2\\\\,h}{N}(0&lt;h&lt;\\\\min \\\\{2,N\\\\})\\\\)</span>, it is shown that there exists a constant <span>\\\\(M_0\\\\ge 0\\\\)</span>, such that the minimization problem exists at least one minimizer if <span>\\\\(M&gt; M_0\\\\)</span>. When <span>\\\\(p=p^*,\\\\)</span> the minimization problem exists at least one minimizer if <span>\\\\(M\\\\in (M_{*},\\\\Vert Q_{p^*}\\\\Vert _{L^2}),\\\\)</span> where constant <span>\\\\(M_{*}\\\\ge 0\\\\)</span> and <span>\\\\(Q_{p^*}\\\\)</span> is the unique positive radial solution of <span>\\\\(-\\\\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\\\\)</span> and under some assumptions on <i>V</i>, there is no minimizer if <span>\\\\(M\\\\ge \\\\Vert Q_{p^*}\\\\Vert _{L^2}\\\\)</span>. Moreover, when <span>\\\\(0&lt;p&lt;p^*,\\\\)</span> for fixed <span>\\\\(M&gt; \\\\Vert Q_{p^*}\\\\Vert _{L^2}\\\\)</span>, we analyze the concentration behavior of minimizers as <span>\\\\(p \\\\nearrow p^* \\\\)</span>.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00969-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00969-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注以下最小化问题 $$begin{aligned} e_p(M)=\inf \{E_p(u):u \in H^1(\mathbb {R}^N),\Vert u\Vert ^2_{L^2}=M^2 \}, end{aligned}$$ 其中能量函数 \(E_p(u)\) 的定义是 $$begin{aligned}E_p(u)=\Vert \nabla u \Vert _{L^2}^2 +\int _{\mathbb {R}^N}V(x)|u |^2dx -\frac{2}{p+2}|x |^{-h}| u|^{p+2}dx \end{aligned}$$,V 是有界势能。对于 \(0<p<p^*:=\frac{4-2\,h}{N}(0<h<\min \{2,N\})\),可以证明存在一个常数\(M_0\ge 0\),这样如果\(M> M_0\),最小化问题至少存在一个最小化子。当(p=p^*,)时,如果(M\in (M_{*},\Vert Q_{p^*}\Vert _{L^2})、\),其中常量 \(M_{*}\ge 0\) 和 \(Q_{p^*}\) 是 \(-\Delta u+u -|| x|^{-h}|u |^{p^*} u=0,\) 的唯一正径向解,并且在 V 的某些假设条件下,如果 \(M\ge \Vert Q_{p^*}\Vert _{L^2}\) 则没有最小化。此外,当\(0<p<p^*,\)为固定的\(M> \Vert Q_{p^*}\Vert _{L^2}\)时,我们分析最小化的集中行为为\(p \nearrow p^* \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and mass concentration of standing waves for inhomogeneous NLS equation with a bounded potential

This paper is concerned with the following minimization problem

$$\begin{aligned} e_p(M)=\inf \{E_p(u):u \in H^1(\mathbb {R}^N),\Vert u\Vert ^2_{L^2}=M^2 \}, \end{aligned}$$

where energy functional \(E_p(u)\) is defined by

$$\begin{aligned} E_p(u)=\Vert \nabla u \Vert _{L^2}^2 +\int _{\mathbb {R}^N} V(x)|u |^2dx -\frac{2}{p+2} \int _{\mathbb {R}^N}|x |^{-h} | u|^{p+2}dx \end{aligned}$$

and V is a bounded potential. For \(0<p< p^*:=\frac{4-2\,h}{N}(0<h<\min \{2,N\})\), it is shown that there exists a constant \(M_0\ge 0\), such that the minimization problem exists at least one minimizer if \(M> M_0\). When \(p=p^*,\) the minimization problem exists at least one minimizer if \(M\in (M_{*},\Vert Q_{p^*}\Vert _{L^2}),\) where constant \(M_{*}\ge 0\) and \(Q_{p^*}\) is the unique positive radial solution of \(-\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\) and under some assumptions on V, there is no minimizer if \(M\ge \Vert Q_{p^*}\Vert _{L^2}\). Moreover, when \(0<p<p^*,\) for fixed \(M> \Vert Q_{p^*}\Vert _{L^2}\), we analyze the concentration behavior of minimizers as \(p \nearrow p^* \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信