{"title":"具有有界势能的非均质 NLS 方程驻波的存在性和质量浓度","authors":"Tian Tian, Jun Wang, Xiaoguang Li","doi":"10.1007/s00030-024-00969-w","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the following minimization problem </p><span>$$\\begin{aligned} e_p(M)=\\inf \\{E_p(u):u \\in H^1(\\mathbb {R}^N),\\Vert u\\Vert ^2_{L^2}=M^2 \\}, \\end{aligned}$$</span><p>where energy functional <span>\\(E_p(u)\\)</span> is defined by </p><span>$$\\begin{aligned} E_p(u)=\\Vert \\nabla u \\Vert _{L^2}^2 +\\int _{\\mathbb {R}^N} V(x)|u |^2dx -\\frac{2}{p+2} \\int _{\\mathbb {R}^N}|x |^{-h} | u|^{p+2}dx \\end{aligned}$$</span><p>and <i>V</i> is a bounded potential. For <span>\\(0<p< p^*:=\\frac{4-2\\,h}{N}(0<h<\\min \\{2,N\\})\\)</span>, it is shown that there exists a constant <span>\\(M_0\\ge 0\\)</span>, such that the minimization problem exists at least one minimizer if <span>\\(M> M_0\\)</span>. When <span>\\(p=p^*,\\)</span> the minimization problem exists at least one minimizer if <span>\\(M\\in (M_{*},\\Vert Q_{p^*}\\Vert _{L^2}),\\)</span> where constant <span>\\(M_{*}\\ge 0\\)</span> and <span>\\(Q_{p^*}\\)</span> is the unique positive radial solution of <span>\\(-\\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\\)</span> and under some assumptions on <i>V</i>, there is no minimizer if <span>\\(M\\ge \\Vert Q_{p^*}\\Vert _{L^2}\\)</span>. Moreover, when <span>\\(0<p<p^*,\\)</span> for fixed <span>\\(M> \\Vert Q_{p^*}\\Vert _{L^2}\\)</span>, we analyze the concentration behavior of minimizers as <span>\\(p \\nearrow p^* \\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and mass concentration of standing waves for inhomogeneous NLS equation with a bounded potential\",\"authors\":\"Tian Tian, Jun Wang, Xiaoguang Li\",\"doi\":\"10.1007/s00030-024-00969-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the following minimization problem </p><span>$$\\\\begin{aligned} e_p(M)=\\\\inf \\\\{E_p(u):u \\\\in H^1(\\\\mathbb {R}^N),\\\\Vert u\\\\Vert ^2_{L^2}=M^2 \\\\}, \\\\end{aligned}$$</span><p>where energy functional <span>\\\\(E_p(u)\\\\)</span> is defined by </p><span>$$\\\\begin{aligned} E_p(u)=\\\\Vert \\\\nabla u \\\\Vert _{L^2}^2 +\\\\int _{\\\\mathbb {R}^N} V(x)|u |^2dx -\\\\frac{2}{p+2} \\\\int _{\\\\mathbb {R}^N}|x |^{-h} | u|^{p+2}dx \\\\end{aligned}$$</span><p>and <i>V</i> is a bounded potential. For <span>\\\\(0<p< p^*:=\\\\frac{4-2\\\\,h}{N}(0<h<\\\\min \\\\{2,N\\\\})\\\\)</span>, it is shown that there exists a constant <span>\\\\(M_0\\\\ge 0\\\\)</span>, such that the minimization problem exists at least one minimizer if <span>\\\\(M> M_0\\\\)</span>. When <span>\\\\(p=p^*,\\\\)</span> the minimization problem exists at least one minimizer if <span>\\\\(M\\\\in (M_{*},\\\\Vert Q_{p^*}\\\\Vert _{L^2}),\\\\)</span> where constant <span>\\\\(M_{*}\\\\ge 0\\\\)</span> and <span>\\\\(Q_{p^*}\\\\)</span> is the unique positive radial solution of <span>\\\\(-\\\\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\\\\)</span> and under some assumptions on <i>V</i>, there is no minimizer if <span>\\\\(M\\\\ge \\\\Vert Q_{p^*}\\\\Vert _{L^2}\\\\)</span>. Moreover, when <span>\\\\(0<p<p^*,\\\\)</span> for fixed <span>\\\\(M> \\\\Vert Q_{p^*}\\\\Vert _{L^2}\\\\)</span>, we analyze the concentration behavior of minimizers as <span>\\\\(p \\\\nearrow p^* \\\\)</span>.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00969-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00969-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
and V is a bounded potential. For \(0<p< p^*:=\frac{4-2\,h}{N}(0<h<\min \{2,N\})\), it is shown that there exists a constant \(M_0\ge 0\), such that the minimization problem exists at least one minimizer if \(M> M_0\). When \(p=p^*,\) the minimization problem exists at least one minimizer if \(M\in (M_{*},\Vert Q_{p^*}\Vert _{L^2}),\) where constant \(M_{*}\ge 0\) and \(Q_{p^*}\) is the unique positive radial solution of \(-\Delta u+u -| x|^{-h}|u |^{p^*} u=0,\) and under some assumptions on V, there is no minimizer if \(M\ge \Vert Q_{p^*}\Vert _{L^2}\). Moreover, when \(0<p<p^*,\) for fixed \(M> \Vert Q_{p^*}\Vert _{L^2}\), we analyze the concentration behavior of minimizers as \(p \nearrow p^* \).