{"title":"关于某些离散化二阶梯度样系统收敛性的三点评论","authors":"Mohamed Ali Jendoubi, Morgan Pierre","doi":"10.1007/s00030-024-00974-z","DOIUrl":null,"url":null,"abstract":"<p>We study several discretizations of a second order gradient-like system with damping. We first consider an explicit scheme with a linear damping in finite dimension. We prove that every solution converges if the nonlinearity satisfies a global Lojasiewicz inequality. Convergence rates are also established. In the case of a strong nonlinear damping, we prove convergence of every solution for a fully implicit scheme in the one-dimensional case, even if the nonlinearity does not satisfy a Lojasiewicz inequality. The optimality of the damping is also established. Numerical simulations illustrate the theoretical results.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three remarks on the convergence of some discretized second order gradient-like systems\",\"authors\":\"Mohamed Ali Jendoubi, Morgan Pierre\",\"doi\":\"10.1007/s00030-024-00974-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study several discretizations of a second order gradient-like system with damping. We first consider an explicit scheme with a linear damping in finite dimension. We prove that every solution converges if the nonlinearity satisfies a global Lojasiewicz inequality. Convergence rates are also established. In the case of a strong nonlinear damping, we prove convergence of every solution for a fully implicit scheme in the one-dimensional case, even if the nonlinearity does not satisfy a Lojasiewicz inequality. The optimality of the damping is also established. Numerical simulations illustrate the theoretical results.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00974-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00974-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three remarks on the convergence of some discretized second order gradient-like systems
We study several discretizations of a second order gradient-like system with damping. We first consider an explicit scheme with a linear damping in finite dimension. We prove that every solution converges if the nonlinearity satisfies a global Lojasiewicz inequality. Convergence rates are also established. In the case of a strong nonlinear damping, we prove convergence of every solution for a fully implicit scheme in the one-dimensional case, even if the nonlinearity does not satisfy a Lojasiewicz inequality. The optimality of the damping is also established. Numerical simulations illustrate the theoretical results.