G_0$的仿射简单环状变种

Zeyu Shen
{"title":"G_0$的仿射简单环状变种","authors":"Zeyu Shen","doi":"arxiv-2406.05562","DOIUrl":null,"url":null,"abstract":"Let $X$ be an affine, simplicial toric variety over a field. Let $G_0$ denote\nthe Grothendieck group of coherent sheaves on a Noetherian scheme and let\n$F^1G_0$ denote the first step of the filtration on $G_0$ by codimension of\nsupport. Then $G_0(X)\\cong\\mathbb{Z}\\oplus F^1G_0(X)$ and $F^1G_0(X)$ is a\nfinite abelian group. In dimension 2, we show that $F^1G_0(X)$ is a finite\ncyclic group and determine its order. In dimension 3, $F^1G_0(X)$ is determined\nup to a group extension of the Chow group $A^1(X)$ by the Chow group $A^2(X)$.\nWe determine the order of the Chow group $A^1(X)$ in this case. A conjecture on\nthe orders of $A^1(X)$ and $A^2(X)$ is formulated for all dimensions.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"180 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$G_0$ of affine, simplicial toric varieties\",\"authors\":\"Zeyu Shen\",\"doi\":\"arxiv-2406.05562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be an affine, simplicial toric variety over a field. Let $G_0$ denote\\nthe Grothendieck group of coherent sheaves on a Noetherian scheme and let\\n$F^1G_0$ denote the first step of the filtration on $G_0$ by codimension of\\nsupport. Then $G_0(X)\\\\cong\\\\mathbb{Z}\\\\oplus F^1G_0(X)$ and $F^1G_0(X)$ is a\\nfinite abelian group. In dimension 2, we show that $F^1G_0(X)$ is a finite\\ncyclic group and determine its order. In dimension 3, $F^1G_0(X)$ is determined\\nup to a group extension of the Chow group $A^1(X)$ by the Chow group $A^2(X)$.\\nWe determine the order of the Chow group $A^1(X)$ in this case. A conjecture on\\nthe orders of $A^1(X)$ and $A^2(X)$ is formulated for all dimensions.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X$ 是一个域上的仿射单纯环综。让 $G_0$ 表示诺特方案上相干剪切的格罗登第克群,让 $F^1G_0$ 表示按支持度数对 $G_0$ 滤波的第一步。那么 $G_0(X)\cong\mathbb{Z}\oplus F^1G_0(X)$ 和 $F^1G_0(X)$ 是无穷无边群。在维度 2 中,我们证明了 $F^1G_0(X)$ 是有限循环群,并确定了它的阶。在维度 3 中,$F^1G_0(X)$ 是由周群$A^2(X)$ 对周群$A^1(X)$ 的群扩展而确定的,我们确定了这种情况下周群$A^1(X)$ 的阶。我们确定了这种情况下周群 $A^1(X)$ 的阶数,并对所有维度的 $A^1(X)$ 和 $A^2(X)$ 的阶数提出了猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$G_0$ of affine, simplicial toric varieties
Let $X$ be an affine, simplicial toric variety over a field. Let $G_0$ denote the Grothendieck group of coherent sheaves on a Noetherian scheme and let $F^1G_0$ denote the first step of the filtration on $G_0$ by codimension of support. Then $G_0(X)\cong\mathbb{Z}\oplus F^1G_0(X)$ and $F^1G_0(X)$ is a finite abelian group. In dimension 2, we show that $F^1G_0(X)$ is a finite cyclic group and determine its order. In dimension 3, $F^1G_0(X)$ is determined up to a group extension of the Chow group $A^1(X)$ by the Chow group $A^2(X)$. We determine the order of the Chow group $A^1(X)$ in this case. A conjecture on the orders of $A^1(X)$ and $A^2(X)$ is formulated for all dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信