哈密尔顿路径和循环的运算结构

Denis Lyskov
{"title":"哈密尔顿路径和循环的运算结构","authors":"Denis Lyskov","doi":"arxiv-2406.06931","DOIUrl":null,"url":null,"abstract":"We study Hamiltonian paths and cycles in undirected graphs from an operadic\nviewpoint. We show that the graphical collection $\\mathsf{Ham}$ encoding\ndirected Hamiltonian paths in connected graphs admits an operad-like structure,\ncalled a contractad. Similarly, we construct the graphical collection of\nHamiltonian cycles $\\mathsf{CycHam}$ that forms a right module over the\ncontractad $\\mathsf{Ham}$. We use the machinery of contractad generating series\nfor counting Hamiltonian paths/cycles for particular types of graphs.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operadic structure on Hamiltonian paths and cycles\",\"authors\":\"Denis Lyskov\",\"doi\":\"arxiv-2406.06931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hamiltonian paths and cycles in undirected graphs from an operadic\\nviewpoint. We show that the graphical collection $\\\\mathsf{Ham}$ encoding\\ndirected Hamiltonian paths in connected graphs admits an operad-like structure,\\ncalled a contractad. Similarly, we construct the graphical collection of\\nHamiltonian cycles $\\\\mathsf{CycHam}$ that forms a right module over the\\ncontractad $\\\\mathsf{Ham}$. We use the machinery of contractad generating series\\nfor counting Hamiltonian paths/cycles for particular types of graphs.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从操作数的角度研究无向图中的哈密顿路径和循环。我们证明,在连通图中编码定向哈密顿路径的图集合 $\mathsf{Ham}$ 具有一种类似于操作数的结构,称为契约数。类似地,我们构建了哈密尔顿循环的图集合 $/mathsf{CycHam}$,它构成了一个覆盖于 contractad $\mathsf{Ham}$ 的右模块。我们使用契约生成数列的机制来计算特定类型图的哈密顿路径/循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operadic structure on Hamiltonian paths and cycles
We study Hamiltonian paths and cycles in undirected graphs from an operadic viewpoint. We show that the graphical collection $\mathsf{Ham}$ encoding directed Hamiltonian paths in connected graphs admits an operad-like structure, called a contractad. Similarly, we construct the graphical collection of Hamiltonian cycles $\mathsf{CycHam}$ that forms a right module over the contractad $\mathsf{Ham}$. We use the machinery of contractad generating series for counting Hamiltonian paths/cycles for particular types of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信