{"title":"哈密尔顿路径和循环的运算结构","authors":"Denis Lyskov","doi":"arxiv-2406.06931","DOIUrl":null,"url":null,"abstract":"We study Hamiltonian paths and cycles in undirected graphs from an operadic\nviewpoint. We show that the graphical collection $\\mathsf{Ham}$ encoding\ndirected Hamiltonian paths in connected graphs admits an operad-like structure,\ncalled a contractad. Similarly, we construct the graphical collection of\nHamiltonian cycles $\\mathsf{CycHam}$ that forms a right module over the\ncontractad $\\mathsf{Ham}$. We use the machinery of contractad generating series\nfor counting Hamiltonian paths/cycles for particular types of graphs.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operadic structure on Hamiltonian paths and cycles\",\"authors\":\"Denis Lyskov\",\"doi\":\"arxiv-2406.06931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hamiltonian paths and cycles in undirected graphs from an operadic\\nviewpoint. We show that the graphical collection $\\\\mathsf{Ham}$ encoding\\ndirected Hamiltonian paths in connected graphs admits an operad-like structure,\\ncalled a contractad. Similarly, we construct the graphical collection of\\nHamiltonian cycles $\\\\mathsf{CycHam}$ that forms a right module over the\\ncontractad $\\\\mathsf{Ham}$. We use the machinery of contractad generating series\\nfor counting Hamiltonian paths/cycles for particular types of graphs.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operadic structure on Hamiltonian paths and cycles
We study Hamiltonian paths and cycles in undirected graphs from an operadic
viewpoint. We show that the graphical collection $\mathsf{Ham}$ encoding
directed Hamiltonian paths in connected graphs admits an operad-like structure,
called a contractad. Similarly, we construct the graphical collection of
Hamiltonian cycles $\mathsf{CycHam}$ that forms a right module over the
contractad $\mathsf{Ham}$. We use the machinery of contractad generating series
for counting Hamiltonian paths/cycles for particular types of graphs.