强 A^1 不变剪切(F. Morel 之后)

Tom Bachmann
{"title":"强 A^1 不变剪切(F. Morel 之后)","authors":"Tom Bachmann","doi":"arxiv-2406.11526","DOIUrl":null,"url":null,"abstract":"Strongly (respectively strictly) A1-invariant sheaves are foundational for\nmotivic homotopy theory over fields. They are sheaves of (abelian) groups on\nthe Nisnevich site of smooth varieties over a field k, with the property that\ntheir zeroth and first Nisnevich cohomology sets (respectively all Nisnevich\ncohomology groups) are invariant under replacing a variety X by the affine line\nover X. A celebrated theorem of Fabien Morel states that if the base field k is\nperfect, then any strongly A1-invariant sheaf of abelian groups is\nautomatically strictly A1-invariant. The aim of these lecture notes is twofold: (1) provide a complete proof if\nthis result, and (2) outline some of its applications.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly A^1-invariant sheaves (after F. Morel)\",\"authors\":\"Tom Bachmann\",\"doi\":\"arxiv-2406.11526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strongly (respectively strictly) A1-invariant sheaves are foundational for\\nmotivic homotopy theory over fields. They are sheaves of (abelian) groups on\\nthe Nisnevich site of smooth varieties over a field k, with the property that\\ntheir zeroth and first Nisnevich cohomology sets (respectively all Nisnevich\\ncohomology groups) are invariant under replacing a variety X by the affine line\\nover X. A celebrated theorem of Fabien Morel states that if the base field k is\\nperfect, then any strongly A1-invariant sheaf of abelian groups is\\nautomatically strictly A1-invariant. The aim of these lecture notes is twofold: (1) provide a complete proof if\\nthis result, and (2) outline some of its applications.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强(分别为严格)A1不变舍维是域上同调理论的基础形式。它们是在k域上光滑品种的尼斯内维奇场上的(无住类)群的舍夫,具有这样的性质:它们的第1和第2尼斯内维奇同调集(分别是所有尼斯内维奇同调群)在用仿射线代替X上的品种X时是不变的。本讲义有两个目的:(1) 提供这一结果的完整证明;(2) 概述其一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly A^1-invariant sheaves (after F. Morel)
Strongly (respectively strictly) A1-invariant sheaves are foundational for motivic homotopy theory over fields. They are sheaves of (abelian) groups on the Nisnevich site of smooth varieties over a field k, with the property that their zeroth and first Nisnevich cohomology sets (respectively all Nisnevich cohomology groups) are invariant under replacing a variety X by the affine line over X. A celebrated theorem of Fabien Morel states that if the base field k is perfect, then any strongly A1-invariant sheaf of abelian groups is automatically strictly A1-invariant. The aim of these lecture notes is twofold: (1) provide a complete proof if this result, and (2) outline some of its applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信