{"title":"dg 类上的有限群作用与霍赫希尔德同源性","authors":"Ville Nordstrom","doi":"arxiv-2406.13866","DOIUrl":null,"url":null,"abstract":"We prove a decomposition of the Hochschild homology groups of the equivariant\ndg category $\\mathscr{C}^G$ associated to a small dg category $\\mathscr{C}$\nwith direct sums on which a finite group $G$ acts. When the ground field is\n$\\mathbb{C}$ this decomposition is related to a categorical action of\n$\\text{Rep}(G)$ on $\\mathscr{C}^G$ and the resulting action of the\nrepresentation ring $R_\\mathbb{C}(G)$ on $HH_\\bullet(\\mathscr{C}^G)$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite group actions on dg categories and Hochschild homology\",\"authors\":\"Ville Nordstrom\",\"doi\":\"arxiv-2406.13866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a decomposition of the Hochschild homology groups of the equivariant\\ndg category $\\\\mathscr{C}^G$ associated to a small dg category $\\\\mathscr{C}$\\nwith direct sums on which a finite group $G$ acts. When the ground field is\\n$\\\\mathbb{C}$ this decomposition is related to a categorical action of\\n$\\\\text{Rep}(G)$ on $\\\\mathscr{C}^G$ and the resulting action of the\\nrepresentation ring $R_\\\\mathbb{C}(G)$ on $HH_\\\\bullet(\\\\mathscr{C}^G)$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.13866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite group actions on dg categories and Hochschild homology
We prove a decomposition of the Hochschild homology groups of the equivariant
dg category $\mathscr{C}^G$ associated to a small dg category $\mathscr{C}$
with direct sums on which a finite group $G$ acts. When the ground field is
$\mathbb{C}$ this decomposition is related to a categorical action of
$\text{Rep}(G)$ on $\mathscr{C}^G$ and the resulting action of the
representation ring $R_\mathbb{C}(G)$ on $HH_\bullet(\mathscr{C}^G)$.