有关奥勒耶克劳斯-托马流形扭转同调的计算

Dung Phuong PhanGAATI, UPF, Tuan Anh BuiHCMUS, Alexander D. RahmGAATI, UPF
{"title":"有关奥勒耶克劳斯-托马流形扭转同调的计算","authors":"Dung Phuong PhanGAATI, UPF, Tuan Anh BuiHCMUS, Alexander D. RahmGAATI, UPF","doi":"arxiv-2406.14942","DOIUrl":null,"url":null,"abstract":"This article investigates the torsion homology behaviour in towers of\nOeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from\nknot theory to OT-manifolds and extends it to higher degree homology groups.In\nthe case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows\nexponentially in both $H_1$ and $H_2$ according to a parameters which already\nplays a role in Inoue's classical paper. This motivates running example\ncalculations in all homological degrees.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computations regarding the torsion homology of Oeljeklaus-Toma manifolds\",\"authors\":\"Dung Phuong PhanGAATI, UPF, Tuan Anh BuiHCMUS, Alexander D. RahmGAATI, UPF\",\"doi\":\"arxiv-2406.14942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the torsion homology behaviour in towers of\\nOeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from\\nknot theory to OT-manifolds and extends it to higher degree homology groups.In\\nthe case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows\\nexponentially in both $H_1$ and $H_2$ according to a parameters which already\\nplays a role in Inoue's classical paper. This motivates running example\\ncalculations in all homological degrees.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了奥勒耶克劳斯-托马(OT)流形塔中的扭转同调行为。在曲面(即 S^{0}$ 类型的井上曲面)的情况下,扭力在 $H_1$ 和 $H_2$ 中根据一个参数呈指数增长,这个参数在井上的经典论文中已经发挥了作用。这促使我们在所有同调度中进行实例计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computations regarding the torsion homology of Oeljeklaus-Toma manifolds
This article investigates the torsion homology behaviour in towers of Oeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from knot theory to OT-manifolds and extends it to higher degree homology groups.In the case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows exponentially in both $H_1$ and $H_2$ according to a parameters which already plays a role in Inoue's classical paper. This motivates running example calculations in all homological degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信