{"title":"组合代数上的共变模块范畴的模型结构与霍普循环理论","authors":"Mariko Ohara","doi":"arxiv-2406.16329","DOIUrl":null,"url":null,"abstract":"Let H be a coFrobenius Hopf algebra over a field k. Let A be a right\nH-comodule algebra over k. We recall that the category of right H-comodules admits a certain model\nstructure whose homotopy category is equivalent to the stable category of right\nH-comodules given in Farina's paper. In the first part of this paper, we show\nthat the category of left A-module objects in the category of right H-comodules\nadmits a model structure, which becomes a model subcategory of the category of\nH*-equivariant A-modules endowed with a model structure given in the author's\nprevious paper if H is finite dimensional with a certain assumption. Note that\nthis category is not a Frobenius category in general. We also construct a\nfunctorial cofibrant replacement by proceeding the similar argument as in Qi's\npaper. In the latter half of this paper, we see that cyclic H-comodules which\ngive Hopf-cyclic (co)homology with coefficients in Hopf H-modules are\ncontructible in the homotopy category of right H-comodules, and we investigate\na Hopf-cyclic (co)homology in slightly modified setting by assuming A a right\nH-comodule k-Hopf algebra with H-colinear bijective antipode in stable category\nof right H-comodules and give an analogue of the characteristic map. We remark\nthat, as an expansion of an idea of taking trivial comodule k as the\ncoefficients, if we take an A-coinvariant part of M assuming M a Hopf A-module\nin the category of right H-comodules, we have the degree shift of cyclic\nmodules.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model structure and Hopf-cyclic theory on the category of coequivariant modules over a comodule algebra\",\"authors\":\"Mariko Ohara\",\"doi\":\"arxiv-2406.16329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a coFrobenius Hopf algebra over a field k. Let A be a right\\nH-comodule algebra over k. We recall that the category of right H-comodules admits a certain model\\nstructure whose homotopy category is equivalent to the stable category of right\\nH-comodules given in Farina's paper. In the first part of this paper, we show\\nthat the category of left A-module objects in the category of right H-comodules\\nadmits a model structure, which becomes a model subcategory of the category of\\nH*-equivariant A-modules endowed with a model structure given in the author's\\nprevious paper if H is finite dimensional with a certain assumption. Note that\\nthis category is not a Frobenius category in general. We also construct a\\nfunctorial cofibrant replacement by proceeding the similar argument as in Qi's\\npaper. In the latter half of this paper, we see that cyclic H-comodules which\\ngive Hopf-cyclic (co)homology with coefficients in Hopf H-modules are\\ncontructible in the homotopy category of right H-comodules, and we investigate\\na Hopf-cyclic (co)homology in slightly modified setting by assuming A a right\\nH-comodule k-Hopf algebra with H-colinear bijective antipode in stable category\\nof right H-comodules and give an analogue of the characteristic map. We remark\\nthat, as an expansion of an idea of taking trivial comodule k as the\\ncoefficients, if we take an A-coinvariant part of M assuming M a Hopf A-module\\nin the category of right H-comodules, we have the degree shift of cyclic\\nmodules.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让H是k域上的共弗罗贝纽斯-霍普夫代数,让A是k域上的右H-模代数。我们回顾一下,右H-模范畴包含某种模型结构,它的同调范畴等价于法利纳论文中给出的右H-模的稳定范畴。在本文的第一部分,我们证明了右H-模子范畴中的左A-模子对象范畴包含一个模型结构,如果H是有限维的,并有一定的假设,这个模型结构就会成为作者上一篇论文中给出的禀赋了模型结构的H*-后变A-模子范畴的一个模型子范畴。请注意,这个范畴一般不是弗罗贝尼斯范畴。我们还通过与齐氏论文类似的论证,构造了一个矢量共纤替换。在本文的后半部分,我们发现在右 H-模子的同调范畴中,给出霍普夫 H-模子中系数的霍普夫循环(同)同调的循环 H-模子是可构造的,并且我们通过假设 A 是右 H-模子的 k-Hopf 代数,在右 H-模子的稳定范畴中具有 H-线性双射反节点,在稍作修改的情况下研究了霍普夫循环(同)同调,并给出了特征映射的类似物。我们注意到,作为以琐碎组合数 k 为系数的思想的扩展,如果我们假定 M 是右 H-组合数范畴中的霍普夫 A-组合数,取 M 的 A-币变部分,就会得到循环组合数的度移。
A model structure and Hopf-cyclic theory on the category of coequivariant modules over a comodule algebra
Let H be a coFrobenius Hopf algebra over a field k. Let A be a right
H-comodule algebra over k. We recall that the category of right H-comodules admits a certain model
structure whose homotopy category is equivalent to the stable category of right
H-comodules given in Farina's paper. In the first part of this paper, we show
that the category of left A-module objects in the category of right H-comodules
admits a model structure, which becomes a model subcategory of the category of
H*-equivariant A-modules endowed with a model structure given in the author's
previous paper if H is finite dimensional with a certain assumption. Note that
this category is not a Frobenius category in general. We also construct a
functorial cofibrant replacement by proceeding the similar argument as in Qi's
paper. In the latter half of this paper, we see that cyclic H-comodules which
give Hopf-cyclic (co)homology with coefficients in Hopf H-modules are
contructible in the homotopy category of right H-comodules, and we investigate
a Hopf-cyclic (co)homology in slightly modified setting by assuming A a right
H-comodule k-Hopf algebra with H-colinear bijective antipode in stable category
of right H-comodules and give an analogue of the characteristic map. We remark
that, as an expansion of an idea of taking trivial comodule k as the
coefficients, if we take an A-coinvariant part of M assuming M a Hopf A-module
in the category of right H-comodules, we have the degree shift of cyclic
modules.