环共积的简单同调不变性

Florian Naef, Pavel Safronov
{"title":"环共积的简单同调不变性","authors":"Florian Naef, Pavel Safronov","doi":"arxiv-2406.19326","DOIUrl":null,"url":null,"abstract":"We prove a transformation formula for the Goresky-Hingston loop coproduct in\nstring topology under homotopy equivalences of manifolds. The formula involves\nthe trace of the Whitehead torsion of the homotopy equivalence. In particular,\nit implies that the loop coproduct is invariant under simple homotopy\nequivalences. In a sense, our results determine the Dennis trace of the simple\nhomotopy type of a closed manifold from its framed configuration spaces of\n$\\leq 2$ points. We also explain how the loop coproduct arises as a secondary\noperation in a 2-dimensional TQFT which elucidates a topological origin of the\ntransformation formula.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple homotopy invariance of the loop coproduct\",\"authors\":\"Florian Naef, Pavel Safronov\",\"doi\":\"arxiv-2406.19326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a transformation formula for the Goresky-Hingston loop coproduct in\\nstring topology under homotopy equivalences of manifolds. The formula involves\\nthe trace of the Whitehead torsion of the homotopy equivalence. In particular,\\nit implies that the loop coproduct is invariant under simple homotopy\\nequivalences. In a sense, our results determine the Dennis trace of the simple\\nhomotopy type of a closed manifold from its framed configuration spaces of\\n$\\\\leq 2$ points. We also explain how the loop coproduct arises as a secondary\\noperation in a 2-dimensional TQFT which elucidates a topological origin of the\\ntransformation formula.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了流形同调等价下的戈尔斯基-兴斯顿环共积instring拓扑的变换公式。该公式涉及同构等价的怀特海扭转的迹。特别是,它意味着在简单同调等价下环路共乘是不变的。从某种意义上说,我们的结果决定了从封闭流形的$\leq 2$ 点的框架配置空间得出的简单同调类型的丹尼斯迹。我们还解释了如何在二维 TQFT 中以二次操作的形式出现环共积,这阐明了变换公式的拓扑起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple homotopy invariance of the loop coproduct
We prove a transformation formula for the Goresky-Hingston loop coproduct in string topology under homotopy equivalences of manifolds. The formula involves the trace of the Whitehead torsion of the homotopy equivalence. In particular, it implies that the loop coproduct is invariant under simple homotopy equivalences. In a sense, our results determine the Dennis trace of the simple homotopy type of a closed manifold from its framed configuration spaces of $\leq 2$ points. We also explain how the loop coproduct arises as a secondary operation in a 2-dimensional TQFT which elucidates a topological origin of the transformation formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信