有限域的伽罗瓦-参数 $K$ 理论

David Chan, Chase Vogeli
{"title":"有限域的伽罗瓦-参数 $K$ 理论","authors":"David Chan, Chase Vogeli","doi":"arxiv-2406.19481","DOIUrl":null,"url":null,"abstract":"We compute the $RO(G)$-graded equivariant algebraic $K$-groups of a finite\nfield with an action by its Galois group $G$. Specifically, we show these\n$K$-groups split as the sum of an explicitly computable term and the\nwell-studied $RO(G)$-graded coefficient groups of the equivariant\nEilenberg--MacLane spectrum $H\\underline{\\mathbb Z}$. Our comparison between\nthe equivariant $K$-theory spectrum and $H\\underline{\\mathbb Z}$ further shows\nthey share the same Tate spectra and geometric fixed point spectra. In the case\nwhere $G$ has prime order, we provide an explicit presentation of the\nequivariant $K$-groups.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Galois-equivariant $K$-theory of finite fields\",\"authors\":\"David Chan, Chase Vogeli\",\"doi\":\"arxiv-2406.19481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the $RO(G)$-graded equivariant algebraic $K$-groups of a finite\\nfield with an action by its Galois group $G$. Specifically, we show these\\n$K$-groups split as the sum of an explicitly computable term and the\\nwell-studied $RO(G)$-graded coefficient groups of the equivariant\\nEilenberg--MacLane spectrum $H\\\\underline{\\\\mathbb Z}$. Our comparison between\\nthe equivariant $K$-theory spectrum and $H\\\\underline{\\\\mathbb Z}$ further shows\\nthey share the same Tate spectra and geometric fixed point spectra. In the case\\nwhere $G$ has prime order, we provide an explicit presentation of the\\nequivariant $K$-groups.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了具有伽罗瓦群$G$作用的有限域的$RO(G)$级代数$K$群。具体地说,我们表明这些$K$群是由一个可明确计算的项与已被深入研究的等变艾伦伯格--麦克莱恩谱$H\underline{\mathbb Z}$的$RO(G)$级系数群之和来分割的。我们对等变 $K$ 理论谱和 $H\underline{mathbb Z}$ 的比较进一步表明,它们具有相同的塔特谱和几何定点谱。在$G$有素数阶的情况下,我们提供了等价$K$群的明确表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Galois-equivariant $K$-theory of finite fields
We compute the $RO(G)$-graded equivariant algebraic $K$-groups of a finite field with an action by its Galois group $G$. Specifically, we show these $K$-groups split as the sum of an explicitly computable term and the well-studied $RO(G)$-graded coefficient groups of the equivariant Eilenberg--MacLane spectrum $H\underline{\mathbb Z}$. Our comparison between the equivariant $K$-theory spectrum and $H\underline{\mathbb Z}$ further shows they share the same Tate spectra and geometric fixed point spectra. In the case where $G$ has prime order, we provide an explicit presentation of the equivariant $K$-groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信