有自动形态的向量空间的 Segal K 理论

Andrea Bianchi, Florian Kranhold
{"title":"有自动形态的向量空间的 Segal K 理论","authors":"Andrea Bianchi, Florian Kranhold","doi":"arxiv-2407.01482","DOIUrl":null,"url":null,"abstract":"We describe the Segal $K$-theory of the symmetric monoidal category of\nfinite-dimensional vector spaces over a perfect field $\\mathbb{F}$ together\nwith an automorphism, or, equivalently, the group-completion of the\n$E_\\infty$-algebra of maps from $S^1$ to the disjoint union of classifying\nspaces $\\mathrm{BGL}_d(\\mathbb F)$, in terms of the $K$-theory of finite field\nextensions of $\\mathbb{F}$. A key ingredient for this is a computation of the\nSegal $K$-theory of the category of finite-dimensional vector spaces with a\nnilpotent endomorphism, which we do over any field $\\mathbb F$. We also discuss\nthe topological cases of $\\mathbb F =\\mathbb C,\\mathbb R$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segal K-theory of vector spaces with an automorphism\",\"authors\":\"Andrea Bianchi, Florian Kranhold\",\"doi\":\"arxiv-2407.01482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the Segal $K$-theory of the symmetric monoidal category of\\nfinite-dimensional vector spaces over a perfect field $\\\\mathbb{F}$ together\\nwith an automorphism, or, equivalently, the group-completion of the\\n$E_\\\\infty$-algebra of maps from $S^1$ to the disjoint union of classifying\\nspaces $\\\\mathrm{BGL}_d(\\\\mathbb F)$, in terms of the $K$-theory of finite field\\nextensions of $\\\\mathbb{F}$. A key ingredient for this is a computation of the\\nSegal $K$-theory of the category of finite-dimensional vector spaces with a\\nnilpotent endomorphism, which we do over any field $\\\\mathbb F$. We also discuss\\nthe topological cases of $\\\\mathbb F =\\\\mathbb C,\\\\mathbb R$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了完备域$\mathbb{F}$上无限维向量空间的对称一元范畴的Segal $K$理论与自变量,或者,等价地,从$S^1$映射到分类空间$\mathrm{BGL}$的分离联盟的$E_\infty$代数的群补全、从$S^1$到分类空间$\mathrm{BGL}_d(\mathbb F)$的分离联盟的映射的$E_\infty$-代数的群完备性,用$\mathbb{F}$的有限域扩展的$K$理论来表示。其中的一个关键要素是计算具有无穷内定形的有限维向量空间范畴的Segal $K$-theory ,我们在任意域 $\mathbb F$ 上都做了这个计算。我们还讨论了 $\mathbb F =\mathbb C,\mathbb R$ 的拓扑情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segal K-theory of vector spaces with an automorphism
We describe the Segal $K$-theory of the symmetric monoidal category of finite-dimensional vector spaces over a perfect field $\mathbb{F}$ together with an automorphism, or, equivalently, the group-completion of the $E_\infty$-algebra of maps from $S^1$ to the disjoint union of classifying spaces $\mathrm{BGL}_d(\mathbb F)$, in terms of the $K$-theory of finite field extensions of $\mathbb{F}$. A key ingredient for this is a computation of the Segal $K$-theory of the category of finite-dimensional vector spaces with a nilpotent endomorphism, which we do over any field $\mathbb F$. We also discuss the topological cases of $\mathbb F =\mathbb C,\mathbb R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信