{"title":"斜率 1 同调稳定性标准","authors":"Mikala Ørsnes Jansen, Jeremy Miller","doi":"arxiv-2407.01124","DOIUrl":null,"url":null,"abstract":"We show that for nice enough $\\mathbb{N}$-graded $\\mathbb{E}_2$-algebras, a\ndiagonal vanishing line in $\\mathbb{E}_1$-homology of gives rise to slope $1$\nhomological stability. This is an integral version of a result by\nKupers-Miller-Patzt.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A criterion for slope 1 homological stability\",\"authors\":\"Mikala Ørsnes Jansen, Jeremy Miller\",\"doi\":\"arxiv-2407.01124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for nice enough $\\\\mathbb{N}$-graded $\\\\mathbb{E}_2$-algebras, a\\ndiagonal vanishing line in $\\\\mathbb{E}_1$-homology of gives rise to slope $1$\\nhomological stability. This is an integral version of a result by\\nKupers-Miller-Patzt.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that for nice enough $\mathbb{N}$-graded $\mathbb{E}_2$-algebras, a
diagonal vanishing line in $\mathbb{E}_1$-homology of gives rise to slope $1$
homological stability. This is an integral version of a result by
Kupers-Miller-Patzt.