{"title":"良好的 r-division 意味着最佳的摊还递减双连接性","authors":"Jacob Holm, Eva Rotenberg","doi":"10.1007/s00224-024-10181-z","DOIUrl":null,"url":null,"abstract":"<p>We present a data structure that, given a graph <i>G</i> of <i>n</i> vertices and <i>m</i> edges, and a suitable pair of nested <i>r</i>-divisions of <i>G</i>, preprocesses <i>G</i> in <span>\\(O(m+n)\\)</span> time and handles any series of edge-deletions in <i>O</i>(<i>m</i>) total time while answering queries to pairwise biconnectivity in worst-case <i>O</i>(1) time. In case the vertices are not biconnected, the data structure can return a cutvertex separating them in worst-case <i>O</i>(1) time. As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge connectivity, and connectivity for large classes of graphs, including planar graphs and other minor free graphs.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Good r-divisions Imply Optimal Amortized Decremental Biconnectivity\",\"authors\":\"Jacob Holm, Eva Rotenberg\",\"doi\":\"10.1007/s00224-024-10181-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a data structure that, given a graph <i>G</i> of <i>n</i> vertices and <i>m</i> edges, and a suitable pair of nested <i>r</i>-divisions of <i>G</i>, preprocesses <i>G</i> in <span>\\\\(O(m+n)\\\\)</span> time and handles any series of edge-deletions in <i>O</i>(<i>m</i>) total time while answering queries to pairwise biconnectivity in worst-case <i>O</i>(1) time. In case the vertices are not biconnected, the data structure can return a cutvertex separating them in worst-case <i>O</i>(1) time. As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge connectivity, and connectivity for large classes of graphs, including planar graphs and other minor free graphs.</p>\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-024-10181-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-024-10181-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种数据结构,给定一个由 n 个顶点和 m 条边组成的图 G,以及 G 的一对合适的嵌套 r 分割,它能在(O(m+n)\)时间内对 G 进行预处理,并在 O(m) 的总时间内处理任何一系列边的删除,同时在最坏情况下在 O(1) 的时间内回答成对双连通性查询。如果顶点不是双连接的,数据结构可以在最坏情况下用 O(1) 的时间返回一个将它们分开的切割顶点。因此,这就为包括平面图和其他次要自由图在内的大量图类提供了最优的摊销递减双连通性、2-边连通性和连通性。
Good r-divisions Imply Optimal Amortized Decremental Biconnectivity
We present a data structure that, given a graph G of n vertices and m edges, and a suitable pair of nested r-divisions of G, preprocesses G in \(O(m+n)\) time and handles any series of edge-deletions in O(m) total time while answering queries to pairwise biconnectivity in worst-case O(1) time. In case the vertices are not biconnected, the data structure can return a cutvertex separating them in worst-case O(1) time. As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge connectivity, and connectivity for large classes of graphs, including planar graphs and other minor free graphs.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.