论具有思维链推理能力的神经语言模型的表征能力

Franz Nowak, Anej Svete, Alexandra Butoi, Ryan Cotterell
{"title":"论具有思维链推理能力的神经语言模型的表征能力","authors":"Franz Nowak, Anej Svete, Alexandra Butoi, Ryan Cotterell","doi":"arxiv-2406.14197","DOIUrl":null,"url":null,"abstract":"The performance of modern language models (LMs) has been improved by\nchain-of-thought (CoT) reasoning, i.e., the process of generating intermediate\nresults that guide the model towards a final answer. A possible explanation for\nthis improvement is that CoT reasoning extends an LM's computational power, as\nRNNs and transformers with additional scratch space are known to be Turing\ncomplete. Comparing LMs to Turing machines, however, introduces a category\nerror - Turing machines decide language membership, whereas LMs define\ndistributions over strings. To bridge this gap, we formalize CoT reasoning in a\nprobabilistic setting. We present several results on the representational\ncapacity of recurrent and transformer LMs with CoT reasoning, showing that they\ncan represent the same family of distributions over strings as probabilistic\nTuring machines.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Representational Capacity of Neural Language Models with Chain-of-Thought Reasoning\",\"authors\":\"Franz Nowak, Anej Svete, Alexandra Butoi, Ryan Cotterell\",\"doi\":\"arxiv-2406.14197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of modern language models (LMs) has been improved by\\nchain-of-thought (CoT) reasoning, i.e., the process of generating intermediate\\nresults that guide the model towards a final answer. A possible explanation for\\nthis improvement is that CoT reasoning extends an LM's computational power, as\\nRNNs and transformers with additional scratch space are known to be Turing\\ncomplete. Comparing LMs to Turing machines, however, introduces a category\\nerror - Turing machines decide language membership, whereas LMs define\\ndistributions over strings. To bridge this gap, we formalize CoT reasoning in a\\nprobabilistic setting. We present several results on the representational\\ncapacity of recurrent and transformer LMs with CoT reasoning, showing that they\\ncan represent the same family of distributions over strings as probabilistic\\nTuring machines.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代语言模型(LM)的性能已通过思维链(CoT)推理(即生成中间结果以引导模型得出最终答案的过程)得到改善。对这种改进的一种可能解释是,CoT 推理扩展了 LM 的计算能力,因为已知具有额外划痕空间的 RNN 和变换器是图灵完备的。不过,将 LM 与图灵机进行比较会引入一个类别错误--图灵机决定语言成员资格,而 LM 则定义字符串的分布。为了弥合这一差距,我们将 CoT 推理形式化为robabilistic 环境。我们提出了几项关于具有 CoT 推理能力的递归 LM 和变换 LM 的表征能力的结果,表明它们可以表征与概率图灵机相同的字符串分布系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Representational Capacity of Neural Language Models with Chain-of-Thought Reasoning
The performance of modern language models (LMs) has been improved by chain-of-thought (CoT) reasoning, i.e., the process of generating intermediate results that guide the model towards a final answer. A possible explanation for this improvement is that CoT reasoning extends an LM's computational power, as RNNs and transformers with additional scratch space are known to be Turing complete. Comparing LMs to Turing machines, however, introduces a category error - Turing machines decide language membership, whereas LMs define distributions over strings. To bridge this gap, we formalize CoT reasoning in a probabilistic setting. We present several results on the representational capacity of recurrent and transformer LMs with CoT reasoning, showing that they can represent the same family of distributions over strings as probabilistic Turing machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信