论自动机的转换构造 -- 分类视角

Mike Cruchten
{"title":"论自动机的转换构造 -- 分类视角","authors":"Mike Cruchten","doi":"arxiv-2406.19312","DOIUrl":null,"url":null,"abstract":"We investigate the transition monoid construction for deterministic automata\nin a categorical setting and establish it as an adjunction. We pair this\nadjunction with two other adjunctions to obtain two endofunctors on\ndeterministic automata, a comonad and a monad, which are closely related,\nrespectively, to the largest set of equations and the smallest set of\ncoequations satisfied by an automaton. Furthermore, we give similar transition\nalgebra constructions for lasso and {\\Omega}-automata, and show that they form\nadjunctions. We present some initial results on sets of equations and\ncoequations for lasso automata.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Transition Constructions for Automata -- A Categorical Perspective\",\"authors\":\"Mike Cruchten\",\"doi\":\"arxiv-2406.19312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the transition monoid construction for deterministic automata\\nin a categorical setting and establish it as an adjunction. We pair this\\nadjunction with two other adjunctions to obtain two endofunctors on\\ndeterministic automata, a comonad and a monad, which are closely related,\\nrespectively, to the largest set of equations and the smallest set of\\ncoequations satisfied by an automaton. Furthermore, we give similar transition\\nalgebra constructions for lasso and {\\\\Omega}-automata, and show that they form\\nadjunctions. We present some initial results on sets of equations and\\ncoequations for lasso automata.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了确定性自动机在分类环境中的过渡单体构造,并将其确立为一个隶属函数。我们把这个结词与另外两个结词配对,得到了关于确定性自动机的两个末函数,即一个逗点和一个单体,它们分别与自动机满足的最大方程组和最小方程组密切相关。此外,我们还给出了拉索和{\Omega}-自动机的类似过渡代数构造,并证明它们构成了结。我们提出了一些关于拉索自动机方程组和方程的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Transition Constructions for Automata -- A Categorical Perspective
We investigate the transition monoid construction for deterministic automata in a categorical setting and establish it as an adjunction. We pair this adjunction with two other adjunctions to obtain two endofunctors on deterministic automata, a comonad and a monad, which are closely related, respectively, to the largest set of equations and the smallest set of coequations satisfied by an automaton. Furthermore, we give similar transition algebra constructions for lasso and {\Omega}-automata, and show that they form adjunctions. We present some initial results on sets of equations and coequations for lasso automata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信