{"title":"萤火虫区间选择与极限学习机相结合,用于复杂样本的光谱量化","authors":"Shuyu Wang, Xudong Zhang, Prisca Mpango, Hao Sun, Xihui Bian","doi":"10.1002/cem.3578","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Firefly algorithm (FA) combined with extreme learning machine (ELM) is developed for spectral interval selection and quantitative analysis of complex samples. The method firstly segments the spectra into a certain number of intervals. Vectors with 1 and 0, which represent the interval selected or not, are used as the inputs of the FA. The RMSEP value predicted by ELM model is used as the fitness function of the FA. The activation function and number of hidden layer nodes of ELM, number of spectral intervals, population number, environmental absorbance, and constant of FA are optimized. The predictive performance of FA-ELM is compared with full-spectrum PLS, ELM, genetic algorithm-ELM (GA-ELM), and particle swarm optimization-ELM (PSO-ELM) by one ultraviolet (UV) spectrum dataset of gasoil and three near-infrared (NIR) spectral datasets of corn, wheat, and tablet samples. The results show that FA-ELM has a better performance compared with its competitors in predicting monoaromatics, water, wheat kernel texture, and active pharmaceutical ingredients (APIs) in gasoil, corn, wheat, and tablet samples.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firefly Interval Selection Combined With Extreme Learning Machine for Spectral Quantification of Complex Samples\",\"authors\":\"Shuyu Wang, Xudong Zhang, Prisca Mpango, Hao Sun, Xihui Bian\",\"doi\":\"10.1002/cem.3578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Firefly algorithm (FA) combined with extreme learning machine (ELM) is developed for spectral interval selection and quantitative analysis of complex samples. The method firstly segments the spectra into a certain number of intervals. Vectors with 1 and 0, which represent the interval selected or not, are used as the inputs of the FA. The RMSEP value predicted by ELM model is used as the fitness function of the FA. The activation function and number of hidden layer nodes of ELM, number of spectral intervals, population number, environmental absorbance, and constant of FA are optimized. The predictive performance of FA-ELM is compared with full-spectrum PLS, ELM, genetic algorithm-ELM (GA-ELM), and particle swarm optimization-ELM (PSO-ELM) by one ultraviolet (UV) spectrum dataset of gasoil and three near-infrared (NIR) spectral datasets of corn, wheat, and tablet samples. The results show that FA-ELM has a better performance compared with its competitors in predicting monoaromatics, water, wheat kernel texture, and active pharmaceutical ingredients (APIs) in gasoil, corn, wheat, and tablet samples.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3578\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3578","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
摘要
萤火虫算法(FA)与极端学习机(ELM)相结合,用于复杂样本的光谱区间选择和定量分析。该方法首先将光谱划分为一定数量的区间。带 1 和 0 的向量代表区间选择与否,被用作 FA 的输入。ELM 模型预测的 RMSEP 值用作 FA 的适应度函数。对 ELM 的激活函数和隐层节点数、光谱区间数、种群数、环境吸光度以及 FA 的常数进行了优化。通过一个汽油紫外线(UV)光谱数据集和三个玉米、小麦和片剂样品的近红外(NIR)光谱数据集,比较了 FA-ELM 与全光谱 PLS、ELM、遗传算法-ELM(GA-ELM)和粒子群优化-ELM(PSO-ELM)的预测性能。结果表明,与竞争对手相比,FA-ELM 在预测汽油、玉米、小麦和片剂样品中的单芳烃、水分、麦仁纹理和活性药物成分 (API) 方面具有更好的性能。
Firefly Interval Selection Combined With Extreme Learning Machine for Spectral Quantification of Complex Samples
Firefly algorithm (FA) combined with extreme learning machine (ELM) is developed for spectral interval selection and quantitative analysis of complex samples. The method firstly segments the spectra into a certain number of intervals. Vectors with 1 and 0, which represent the interval selected or not, are used as the inputs of the FA. The RMSEP value predicted by ELM model is used as the fitness function of the FA. The activation function and number of hidden layer nodes of ELM, number of spectral intervals, population number, environmental absorbance, and constant of FA are optimized. The predictive performance of FA-ELM is compared with full-spectrum PLS, ELM, genetic algorithm-ELM (GA-ELM), and particle swarm optimization-ELM (PSO-ELM) by one ultraviolet (UV) spectrum dataset of gasoil and three near-infrared (NIR) spectral datasets of corn, wheat, and tablet samples. The results show that FA-ELM has a better performance compared with its competitors in predicting monoaromatics, water, wheat kernel texture, and active pharmaceutical ingredients (APIs) in gasoil, corn, wheat, and tablet samples.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.