Julieta M. Ramírez-Mejía, Valeska Villegas-Escobar, Luis A. Gómez
{"title":"来自茶碱芽孢杆菌 EA-CB0015 和肉桂提取物的脂肽可降低立方体镰刀菌的生物能反应","authors":"Julieta M. Ramírez-Mejía, Valeska Villegas-Escobar, Luis A. Gómez","doi":"10.1007/s10658-024-02882-5","DOIUrl":null,"url":null,"abstract":"<p>Lipopeptides (LPs) from <i>B. tequilensis</i> EA-CB0015 have antifungal activity against <i>Fusarium</i> species. Specifically, against <i>F. oxysporum</i> f. sp. <i>cubense</i> (<i>Foc</i>)<i>,</i> the cause of <i>Fusarium</i> wilt of banana. Cinnamon (CN) extract is also known for its inhibitory activity against the <i>Fusarium</i> genus. The main goal of this research was to determine whether the effect of LPs and CN extract or their combination against a <i>Foc</i> isolate is related to an impairment of mitochondrial function. Our results show that biomass decreased by 74% (<i>p</i> < 0.0001) and 84% (<i>p</i> < 0.0001) when cultures were treated with 128 ppm LPs and 152.5 ppm CN extract, respectively. In parallel, we found a pronounced impairment of the bioenergetic response. That is, the routine oxygen consumption rate diminished by 55% (<i>p</i> = 0.0148) and 38% (<i>p</i> < 0.0001), respectively. Moreover, the ATP-linked respiratory rate decreased by 63% (<i>p</i> = 0.0461) and 44% (<i>p</i> = 0.0005), while the FCCP-simulated respiratory rate by 63% (<i>p</i> = 0.0255) and 45% (<i>p</i> = 0.0002). Therefore, our data suggest that the altered bioenergetic response observed in cultures of <i>Foc</i> treated with LPs or CN is mainly caused by an impairment of the activity of the respiratory complexes. On the other hand, biomass production was reduced by 80% (<i>p</i> < 0.0001) when cultures were treated with a mixture comprising only 10% LPs and 40% CN extract. Furthermore, ATP-linked and FCCP-stimulated respiratory rates decreased by 62% (<i>p</i> = 0.0024) and 68% (<i>p</i> < 0.0001), respectively under the same conditions. A potentially synergistic antifungal effect of cyclic LPs with a CN extract is suggested.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":12052,"journal":{"name":"European Journal of Plant Pathology","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipopeptides from Bacillus tequilensis EA-CB0015 and cinnamon extract decrease the bioenergetic response of Fusarium oxysporum f. sp. cubense\",\"authors\":\"Julieta M. Ramírez-Mejía, Valeska Villegas-Escobar, Luis A. Gómez\",\"doi\":\"10.1007/s10658-024-02882-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lipopeptides (LPs) from <i>B. tequilensis</i> EA-CB0015 have antifungal activity against <i>Fusarium</i> species. Specifically, against <i>F. oxysporum</i> f. sp. <i>cubense</i> (<i>Foc</i>)<i>,</i> the cause of <i>Fusarium</i> wilt of banana. Cinnamon (CN) extract is also known for its inhibitory activity against the <i>Fusarium</i> genus. The main goal of this research was to determine whether the effect of LPs and CN extract or their combination against a <i>Foc</i> isolate is related to an impairment of mitochondrial function. Our results show that biomass decreased by 74% (<i>p</i> < 0.0001) and 84% (<i>p</i> < 0.0001) when cultures were treated with 128 ppm LPs and 152.5 ppm CN extract, respectively. In parallel, we found a pronounced impairment of the bioenergetic response. That is, the routine oxygen consumption rate diminished by 55% (<i>p</i> = 0.0148) and 38% (<i>p</i> < 0.0001), respectively. Moreover, the ATP-linked respiratory rate decreased by 63% (<i>p</i> = 0.0461) and 44% (<i>p</i> = 0.0005), while the FCCP-simulated respiratory rate by 63% (<i>p</i> = 0.0255) and 45% (<i>p</i> = 0.0002). Therefore, our data suggest that the altered bioenergetic response observed in cultures of <i>Foc</i> treated with LPs or CN is mainly caused by an impairment of the activity of the respiratory complexes. On the other hand, biomass production was reduced by 80% (<i>p</i> < 0.0001) when cultures were treated with a mixture comprising only 10% LPs and 40% CN extract. Furthermore, ATP-linked and FCCP-stimulated respiratory rates decreased by 62% (<i>p</i> = 0.0024) and 68% (<i>p</i> < 0.0001), respectively under the same conditions. A potentially synergistic antifungal effect of cyclic LPs with a CN extract is suggested.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":12052,\"journal\":{\"name\":\"European Journal of Plant Pathology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10658-024-02882-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10658-024-02882-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Lipopeptides from Bacillus tequilensis EA-CB0015 and cinnamon extract decrease the bioenergetic response of Fusarium oxysporum f. sp. cubense
Lipopeptides (LPs) from B. tequilensis EA-CB0015 have antifungal activity against Fusarium species. Specifically, against F. oxysporum f. sp. cubense (Foc), the cause of Fusarium wilt of banana. Cinnamon (CN) extract is also known for its inhibitory activity against the Fusarium genus. The main goal of this research was to determine whether the effect of LPs and CN extract or their combination against a Foc isolate is related to an impairment of mitochondrial function. Our results show that biomass decreased by 74% (p < 0.0001) and 84% (p < 0.0001) when cultures were treated with 128 ppm LPs and 152.5 ppm CN extract, respectively. In parallel, we found a pronounced impairment of the bioenergetic response. That is, the routine oxygen consumption rate diminished by 55% (p = 0.0148) and 38% (p < 0.0001), respectively. Moreover, the ATP-linked respiratory rate decreased by 63% (p = 0.0461) and 44% (p = 0.0005), while the FCCP-simulated respiratory rate by 63% (p = 0.0255) and 45% (p = 0.0002). Therefore, our data suggest that the altered bioenergetic response observed in cultures of Foc treated with LPs or CN is mainly caused by an impairment of the activity of the respiratory complexes. On the other hand, biomass production was reduced by 80% (p < 0.0001) when cultures were treated with a mixture comprising only 10% LPs and 40% CN extract. Furthermore, ATP-linked and FCCP-stimulated respiratory rates decreased by 62% (p = 0.0024) and 68% (p < 0.0001), respectively under the same conditions. A potentially synergistic antifungal effect of cyclic LPs with a CN extract is suggested.
期刊介绍:
The European Journal of Plant Pathology is an international journal publishing original articles in English dealing with fundamental and applied aspects of plant pathology; considering disease in agricultural and horticultural crops, forestry, and in natural plant populations. The types of articles published are :Original Research at the molecular, physiological, whole-plant and population levels; Mini-reviews on topics which are timely and of global rather than national or regional significance; Short Communications for important research findings that can be presented in an abbreviated format; and Letters-to-the-Editor, where these raise issues related to articles previously published in the journal. Submissions relating to disease vector biology and integrated crop protection are welcome. However, routine screenings of plant protection products, varietal trials for disease resistance, and biological control agents are not published in the journal unless framed in the context of strategic approaches to disease management.