莫里锥边界上的四角锥,适用于非常一般的平面吹胀

IF 0.7 2区 数学 Q2 MATHEMATICS
Ciro Ciliberto, Rick Miranda, Joaquim Roé
{"title":"莫里锥边界上的四角锥,适用于非常一般的平面吹胀","authors":"Ciro Ciliberto, Rick Miranda, Joaquim Roé","doi":"10.1007/s13348-024-00447-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at <span>\\(s\\ge 13\\)</span> very general points. This gives evidence for De Fernex’s strong <span>\\(\\Delta \\)</span>-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":"62 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadric cones on the boundary of the Mori cone for very general blowups of the plane\",\"authors\":\"Ciro Ciliberto, Rick Miranda, Joaquim Roé\",\"doi\":\"10.1007/s13348-024-00447-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at <span>\\\\(s\\\\ge 13\\\\)</span> very general points. This gives evidence for De Fernex’s strong <span>\\\\(\\\\Delta \\\\)</span>-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-024-00447-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00447-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在8维有理球面上,在平面炸开的莫里锥的边界上存在着在\(\ge 13\) 非常一般的点上的锥。这为德费耐克斯的强((△\)-猜想提供了证据,众所周知这意味着永田猜想。这也意味着存在 Ciliberto 等人(Clay Math Proc 18:185-203, 2013)中定义的众多好射线和奇妙射线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadric cones on the boundary of the Mori cone for very general blowups of the plane

In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at \(s\ge 13\) very general points. This gives evidence for De Fernex’s strong \(\Delta \)-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信