方盘阵列的平面应变弹性问题。I. 带有软夹杂物的复合材料中的弹性场

IF 0.5 4区 工程技术 Q4 MECHANICS
P. Drygaś, N. Rylko
{"title":"方盘阵列的平面应变弹性问题。I. 带有软夹杂物的复合材料中的弹性场","authors":"P. Drygaś, N. Rylko","doi":"10.1134/s0021894424020172","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The stress-strain elastic field in a square array of <i>N</i> non-overlapping circular inclusions is described by approximate analytical formulas. In particular, soft inclusions are studied by an asymptotic analysis. The case with <i>N</i> = 1 yields a regular square array of disks of radius r embedded in an elastic matrix. The computations of Natanzon and Filshtinsky are based on an infinite system of linear algebraic equations solved by the truncation method. The infinite system determines the Taylor series coefficients of the Kolosov–Muskhelishvili complex potentials. A method of functional equations is used to write the series coefficients in symbolic form up to terms of the order of <i>O</i>(<i>r</i><sup>2<i>s</i></sup>) at a fixed value of <i>s</i>. Approximate analytical formulas for local elastic fields are derived.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"59 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane-Strain Elastic Problem for a Square Array of Disks. I. Elastic Field in a Composite with Soft Inclusions\",\"authors\":\"P. Drygaś, N. Rylko\",\"doi\":\"10.1134/s0021894424020172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The stress-strain elastic field in a square array of <i>N</i> non-overlapping circular inclusions is described by approximate analytical formulas. In particular, soft inclusions are studied by an asymptotic analysis. The case with <i>N</i> = 1 yields a regular square array of disks of radius r embedded in an elastic matrix. The computations of Natanzon and Filshtinsky are based on an infinite system of linear algebraic equations solved by the truncation method. The infinite system determines the Taylor series coefficients of the Kolosov–Muskhelishvili complex potentials. A method of functional equations is used to write the series coefficients in symbolic form up to terms of the order of <i>O</i>(<i>r</i><sup>2<i>s</i></sup>) at a fixed value of <i>s</i>. Approximate analytical formulas for local elastic fields are derived.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0021894424020172\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0021894424020172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 由 N 个非重叠圆形夹杂物组成的正方形阵列中的应力-应变弹性场是用近似分析公式描述的。特别是通过渐近分析研究了软夹杂物。在 N = 1 的情况下,会产生一个嵌入弹性矩阵的半径为 r 的规则方形圆盘阵列。Natanzon 和 Filshtinsky 的计算基于截断法求解的线性代数方程的无限系统。这个无限系统决定了 Kolosov-Muskhelishvili 复势的泰勒级数系数。利用函数方程的方法,以符号形式写出了在 s 的固定值下直到 O(r2s)阶项的系列系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane-Strain Elastic Problem for a Square Array of Disks. I. Elastic Field in a Composite with Soft Inclusions

Abstract

The stress-strain elastic field in a square array of N non-overlapping circular inclusions is described by approximate analytical formulas. In particular, soft inclusions are studied by an asymptotic analysis. The case with N = 1 yields a regular square array of disks of radius r embedded in an elastic matrix. The computations of Natanzon and Filshtinsky are based on an infinite system of linear algebraic equations solved by the truncation method. The infinite system determines the Taylor series coefficients of the Kolosov–Muskhelishvili complex potentials. A method of functional equations is used to write the series coefficients in symbolic form up to terms of the order of O(r2s) at a fixed value of s. Approximate analytical formulas for local elastic fields are derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信