迪里夏特分布新视角:稳健性、聚类和两者兼而有之

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker
{"title":"迪里夏特分布新视角:稳健性、聚类和两者兼而有之","authors":"Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker","doi":"10.1007/s00357-024-09480-4","DOIUrl":null,"url":null,"abstract":"<p>Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"70 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together\",\"authors\":\"Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker\",\"doi\":\"10.1007/s00357-024-09480-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09480-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09480-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

组合数据具有独特的特征,对传统的统计方法和模型提出了巨大的挑战。在此框架内,我们在多个统计领域使用了方便的模式参数化 Dirichlet 分布。特别是,我们为基于模型的聚类和分类提出了单模态 Dirichlet (UD) 分布的有限混合物。然后,我们介绍了受污染的 UD(CUD)分布,它是 UD 分布的重尾广义化,允许在存在非典型观察结果的情况下具有更灵活的尾部行为。第三,我们提出了 CUD 分布的有限混合物,以共同考虑数据中集群和非典型点的存在。参数估计通过直接最大化最大似然或使用期望最大化(EM)算法进行。我们对模拟数据进行了两项分析,以说明非典型观测对参数估计和数据分类的影响,以及我们的建议如何解决这两方面的问题。此外,还研究了两个真实数据集,并讨论了通过我们的模型获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together

A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together

Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信