Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker
{"title":"迪里夏特分布新视角:稳健性、聚类和两者兼而有之","authors":"Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker","doi":"10.1007/s00357-024-09480-4","DOIUrl":null,"url":null,"abstract":"<p>Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"70 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together\",\"authors\":\"Salvatore D. Tomarchio, Antonio Punzo, Johannes T. Ferreira, Andriette Bekker\",\"doi\":\"10.1007/s00357-024-09480-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09480-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09480-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together
Compositional data have peculiar characteristics that pose significant challenges to traditional statistical methods and models. Within this framework, we use a convenient mode parametrized Dirichlet distribution across multiple fields of statistics. In particular, we propose finite mixtures of unimodal Dirichlet (UD) distributions for model-based clustering and classification. Then, we introduce the contaminated UD (CUD) distribution, a heavy-tailed generalization of the UD distribution that allows for a more flexible tail behavior in the presence of atypical observations. Thirdly, we propose finite mixtures of CUD distributions to jointly account for the presence of clusters and atypical points in the data. Parameter estimation is carried out by directly maximizing the maximum likelihood or by using an expectation-maximization (EM) algorithm. Two analyses are conducted on simulated data to illustrate the effects of atypical observations on parameter estimation and data classification, and how our proposals address both aspects. Furthermore, two real datasets are investigated and the results obtained via our models are discussed.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.