Eman I. Abd El-Latif, Mohamed El-dosuky, Ashraf Darwish, Aboul Ella Hassanien
{"title":"使用集合卷积神经长短期记忆网络的狗行为识别模型","authors":"Eman I. Abd El-Latif, Mohamed El-dosuky, Ashraf Darwish, Aboul Ella Hassanien","doi":"10.1007/s12652-024-04822-x","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new model based on Convolutional Neural Networks (CNN) with a long short-term memory network (LSTM) and ensemble technique for identifying seven different dogs’ behaviors. The proposed model uses data collected from two sensors attached to the dog’s back and neck. In the initial step in the model, the undefined tasks are removed, and the synthetic minority oversampling technique (SMOTE) is performed to address the imbalanced data problem. Then, CNN_LSTM and ensemble classifier are adapted to identify various dog behaviors. Finally, two experiments are performed to evaluate the model. The first experiment is performed utilizing the original data (imbalanced datasets) while the second uses a balanced dataset. Experimental results can identify seven dog behaviors with a potential accuracy of 96.73%, 96.76% sensitivity, 96.73% specificity, and 96.73% F1 score. Therefore, the SMOTE method, a data balancing strategy, not only overcomes the unbalanced data problem but also significantly improves minority class accuracy. Additionally, the suggested model is tested against cutting-edge algorithms, and the outcomes demonstrate its superior performance.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dog behaviors identification model using ensemble convolutional neural long short-term memory networks\",\"authors\":\"Eman I. Abd El-Latif, Mohamed El-dosuky, Ashraf Darwish, Aboul Ella Hassanien\",\"doi\":\"10.1007/s12652-024-04822-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new model based on Convolutional Neural Networks (CNN) with a long short-term memory network (LSTM) and ensemble technique for identifying seven different dogs’ behaviors. The proposed model uses data collected from two sensors attached to the dog’s back and neck. In the initial step in the model, the undefined tasks are removed, and the synthetic minority oversampling technique (SMOTE) is performed to address the imbalanced data problem. Then, CNN_LSTM and ensemble classifier are adapted to identify various dog behaviors. Finally, two experiments are performed to evaluate the model. The first experiment is performed utilizing the original data (imbalanced datasets) while the second uses a balanced dataset. Experimental results can identify seven dog behaviors with a potential accuracy of 96.73%, 96.76% sensitivity, 96.73% specificity, and 96.73% F1 score. Therefore, the SMOTE method, a data balancing strategy, not only overcomes the unbalanced data problem but also significantly improves minority class accuracy. Additionally, the suggested model is tested against cutting-edge algorithms, and the outcomes demonstrate its superior performance.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04822-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04822-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Dog behaviors identification model using ensemble convolutional neural long short-term memory networks
This paper presents a new model based on Convolutional Neural Networks (CNN) with a long short-term memory network (LSTM) and ensemble technique for identifying seven different dogs’ behaviors. The proposed model uses data collected from two sensors attached to the dog’s back and neck. In the initial step in the model, the undefined tasks are removed, and the synthetic minority oversampling technique (SMOTE) is performed to address the imbalanced data problem. Then, CNN_LSTM and ensemble classifier are adapted to identify various dog behaviors. Finally, two experiments are performed to evaluate the model. The first experiment is performed utilizing the original data (imbalanced datasets) while the second uses a balanced dataset. Experimental results can identify seven dog behaviors with a potential accuracy of 96.73%, 96.76% sensitivity, 96.73% specificity, and 96.73% F1 score. Therefore, the SMOTE method, a data balancing strategy, not only overcomes the unbalanced data problem but also significantly improves minority class accuracy. Additionally, the suggested model is tested against cutting-edge algorithms, and the outcomes demonstrate its superior performance.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators