Byungju Bae, Taehoon Chin, Xuanxi Liu, Younghoon Cho
{"title":"利用多物理场和等效电路模型比较长电缆阻抗","authors":"Byungju Bae, Taehoon Chin, Xuanxi Liu, Younghoon Cho","doi":"10.1007/s43236-024-00859-5","DOIUrl":null,"url":null,"abstract":"<p>When a long cable is included in power conversion systems, it causes adverse effects, such as voltage spikes and ringing at load terminals. These nonideal voltages can break the insulation of electric machines, such as transformers and motors, and reduce their lifespan. To estimate such voltage characteristics, cable impedance should be modeled on the basis of the cable length. In this paper, two cable impedance models, a multiphysics model and an equivalent circuit model, are introduced. The multiphysics model using Ansys Q3D Extractor is suggested in consideration of the structure, material, and length of a practical cable. Meanwhile, the equivalent circuit model can be quickly utilized to examine voltage spikes and frequency. The accuracy of the proposed models is verified through simulation and the experimental results based on a motor drive system equipped with 30 and 100-m cables.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of long cable impedances using multiphysics and equivalent circuit models\",\"authors\":\"Byungju Bae, Taehoon Chin, Xuanxi Liu, Younghoon Cho\",\"doi\":\"10.1007/s43236-024-00859-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When a long cable is included in power conversion systems, it causes adverse effects, such as voltage spikes and ringing at load terminals. These nonideal voltages can break the insulation of electric machines, such as transformers and motors, and reduce their lifespan. To estimate such voltage characteristics, cable impedance should be modeled on the basis of the cable length. In this paper, two cable impedance models, a multiphysics model and an equivalent circuit model, are introduced. The multiphysics model using Ansys Q3D Extractor is suggested in consideration of the structure, material, and length of a practical cable. Meanwhile, the equivalent circuit model can be quickly utilized to examine voltage spikes and frequency. The accuracy of the proposed models is verified through simulation and the experimental results based on a motor drive system equipped with 30 and 100-m cables.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00859-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00859-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparison of long cable impedances using multiphysics and equivalent circuit models
When a long cable is included in power conversion systems, it causes adverse effects, such as voltage spikes and ringing at load terminals. These nonideal voltages can break the insulation of electric machines, such as transformers and motors, and reduce their lifespan. To estimate such voltage characteristics, cable impedance should be modeled on the basis of the cable length. In this paper, two cable impedance models, a multiphysics model and an equivalent circuit model, are introduced. The multiphysics model using Ansys Q3D Extractor is suggested in consideration of the structure, material, and length of a practical cable. Meanwhile, the equivalent circuit model can be quickly utilized to examine voltage spikes and frequency. The accuracy of the proposed models is verified through simulation and the experimental results based on a motor drive system equipped with 30 and 100-m cables.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.