Minglan Xiong, Zhaoguo Hou, Huawei Wang, Changchang Che, Rui Luo
{"title":"基于 MTCNN 和贝叶斯优化的航空事故预测方法","authors":"Minglan Xiong, Zhaoguo Hou, Huawei Wang, Changchang Che, Rui Luo","doi":"10.1007/s10115-024-02168-6","DOIUrl":null,"url":null,"abstract":"<p>The safety of the civil aviation system has been of increasing concern with several accidents in recent years. It is urgent to put forward a precise accident prediction model, which can systematically analyze safety from the perspective of accident mechanism to enhance training accuracy. Furthermore, the predictive model is critical for stakeholders to identify risk and implement the proactive safety paradigm. In this work, to mitigate casualties and economic losses arising from aviation accidents and improve system safety, the focus is on predicting the aircraft damage severity, the injury/death severity, and the flight phases in the sequence of identifying event risk sources. This work establishes a multi-task deep convolutional neural network (MTCNN) learning framework to accomplish this goal. An innovative prediction rule will be developed to refine prediction results from two approaches: handling imbalanced classes and Bayesian optimization. By comparing the performance of the proposed multi-task model with other single-task machine learning models with ten-fold cross-validation and statistical testing, the effectiveness of the developed model in predicting aviation accident severity and flight phase is demonstrated.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"10 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An aviation accidents prediction method based on MTCNN and Bayesian optimization\",\"authors\":\"Minglan Xiong, Zhaoguo Hou, Huawei Wang, Changchang Che, Rui Luo\",\"doi\":\"10.1007/s10115-024-02168-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The safety of the civil aviation system has been of increasing concern with several accidents in recent years. It is urgent to put forward a precise accident prediction model, which can systematically analyze safety from the perspective of accident mechanism to enhance training accuracy. Furthermore, the predictive model is critical for stakeholders to identify risk and implement the proactive safety paradigm. In this work, to mitigate casualties and economic losses arising from aviation accidents and improve system safety, the focus is on predicting the aircraft damage severity, the injury/death severity, and the flight phases in the sequence of identifying event risk sources. This work establishes a multi-task deep convolutional neural network (MTCNN) learning framework to accomplish this goal. An innovative prediction rule will be developed to refine prediction results from two approaches: handling imbalanced classes and Bayesian optimization. By comparing the performance of the proposed multi-task model with other single-task machine learning models with ten-fold cross-validation and statistical testing, the effectiveness of the developed model in predicting aviation accident severity and flight phase is demonstrated.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02168-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02168-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An aviation accidents prediction method based on MTCNN and Bayesian optimization
The safety of the civil aviation system has been of increasing concern with several accidents in recent years. It is urgent to put forward a precise accident prediction model, which can systematically analyze safety from the perspective of accident mechanism to enhance training accuracy. Furthermore, the predictive model is critical for stakeholders to identify risk and implement the proactive safety paradigm. In this work, to mitigate casualties and economic losses arising from aviation accidents and improve system safety, the focus is on predicting the aircraft damage severity, the injury/death severity, and the flight phases in the sequence of identifying event risk sources. This work establishes a multi-task deep convolutional neural network (MTCNN) learning framework to accomplish this goal. An innovative prediction rule will be developed to refine prediction results from two approaches: handling imbalanced classes and Bayesian optimization. By comparing the performance of the proposed multi-task model with other single-task machine learning models with ten-fold cross-validation and statistical testing, the effectiveness of the developed model in predicting aviation accident severity and flight phase is demonstrated.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.