共振条件下垂直挡板对汽车油箱中液体滑动阻尼效应的影响研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xudong Wu, Ren He
{"title":"共振条件下垂直挡板对汽车油箱中液体滑动阻尼效应的影响研究","authors":"Xudong Wu, Ren He","doi":"10.1007/s40997-024-00786-7","DOIUrl":null,"url":null,"abstract":"<p>The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions\",\"authors\":\"Xudong Wu, Ren He\",\"doi\":\"10.1007/s40997-024-00786-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-024-00786-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00786-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

汽车油箱中的燃油晃动会造成不良后果,尤其是在共振条件下,而垂直挡板可有效抑制燃油晃动。目前的研究将网格运动和液体体积结合起来,研究在共振条件下,挡板高度对不同装载量下液体滑动阻尼效果的影响。目的是探索不同燃料填充水平下的最佳挡板高度。结果表明,当使用与液体高度相同的挡板时,可以获得最佳的阻尼效果。为了减小对油箱壁的冲击压力,低充油量时应使用略高于自由表面高度的挡板,中等充油量时应使用略低于自由表面高度的挡板。与高充气水平相比,在低充气水平和中充气水平下,挡板能更有效地降低荡力和力矩。提出了一种新的能量阻尼比计算公式。在 20% 的燃油加注水平下,能量阻尼比随着挡板高度的增加而不断增加,当 hb/hw = 1.2 时达到最大值 85.31%。在 50% 和 80% 的燃油填充水平下,当 hb/hw = 1 时,阻尼比达到最大值,分别为 79.79% 和 56.39%。这项研究为汽车油箱的防侧滑设计提供了重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions

Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions

The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when hb/hw = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when hb/hw = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信