{"title":"共振条件下垂直挡板对汽车油箱中液体滑动阻尼效应的影响研究","authors":"Xudong Wu, Ren He","doi":"10.1007/s40997-024-00786-7","DOIUrl":null,"url":null,"abstract":"<p>The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions\",\"authors\":\"Xudong Wu, Ren He\",\"doi\":\"10.1007/s40997-024-00786-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.</p>\",\"PeriodicalId\":49063,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-024-00786-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00786-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions
The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when hb/hw = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when hb/hw = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.