Lucie Němcová, Jaroslav Pluskal, Radovan Šomplák, Jakub Kůdela
{"title":"实现高效废物管理:通过监测数据确定微观区域废物流动链的细节","authors":"Lucie Němcová, Jaroslav Pluskal, Radovan Šomplák, Jakub Kůdela","doi":"10.1007/s11081-024-09897-1","DOIUrl":null,"url":null,"abstract":"<p>Countries around the world are gradually implementing the transition to a circular economy in waste management. This effort should be initiated already at the waste producers. It is necessary to plan and monitor waste management in as much detail as possible, i.e. at the level of micro-regions. At present, only indicators at the national level are analysed, as more detailed data at the micro-regional level are often not available or are burdened with significant errors and inconsistencies. The calculation of waste management indicators for micro-regions will allow to identify the potential for increasing material or energy recovery and to plan the necessary infrastructure directly to these locations instead of blanket and often ineffective legislative actions. This paper presents an approach for determining the producer-treatment linkage, i.e., provides information about each produced waste, where it was treated, and in what way. Such information is often not available based on historical waste management data as there are repeated waste transfers and often aggregated within a micro-region. The network flow approach is based on an iterative procedure combining a simulation with multi-criteria optimization. The chosen criteria replicate expert estimates in investigated issue such as minimum flow splitting, and minimum transfer micro-regions. A data reconciliation is performed where the deviation from all simulations is minimized, given that the capacity constraints of nodes and arcs resulting from the database must be satisfied. The approach is tested on a generated sample task to evaluate the precision and time complexity of the developed tool. Finally, the presented approach is applied to address a case study in the Czech Republic, within which it is possible to identify treatment location and methods for waste from individual regions.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards efficient waste management: identification of waste flow chains in micro-regional detail through monitored data\",\"authors\":\"Lucie Němcová, Jaroslav Pluskal, Radovan Šomplák, Jakub Kůdela\",\"doi\":\"10.1007/s11081-024-09897-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Countries around the world are gradually implementing the transition to a circular economy in waste management. This effort should be initiated already at the waste producers. It is necessary to plan and monitor waste management in as much detail as possible, i.e. at the level of micro-regions. At present, only indicators at the national level are analysed, as more detailed data at the micro-regional level are often not available or are burdened with significant errors and inconsistencies. The calculation of waste management indicators for micro-regions will allow to identify the potential for increasing material or energy recovery and to plan the necessary infrastructure directly to these locations instead of blanket and often ineffective legislative actions. This paper presents an approach for determining the producer-treatment linkage, i.e., provides information about each produced waste, where it was treated, and in what way. Such information is often not available based on historical waste management data as there are repeated waste transfers and often aggregated within a micro-region. The network flow approach is based on an iterative procedure combining a simulation with multi-criteria optimization. The chosen criteria replicate expert estimates in investigated issue such as minimum flow splitting, and minimum transfer micro-regions. A data reconciliation is performed where the deviation from all simulations is minimized, given that the capacity constraints of nodes and arcs resulting from the database must be satisfied. The approach is tested on a generated sample task to evaluate the precision and time complexity of the developed tool. Finally, the presented approach is applied to address a case study in the Czech Republic, within which it is possible to identify treatment location and methods for waste from individual regions.</p>\",\"PeriodicalId\":56141,\"journal\":{\"name\":\"Optimization and Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09897-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09897-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards efficient waste management: identification of waste flow chains in micro-regional detail through monitored data
Countries around the world are gradually implementing the transition to a circular economy in waste management. This effort should be initiated already at the waste producers. It is necessary to plan and monitor waste management in as much detail as possible, i.e. at the level of micro-regions. At present, only indicators at the national level are analysed, as more detailed data at the micro-regional level are often not available or are burdened with significant errors and inconsistencies. The calculation of waste management indicators for micro-regions will allow to identify the potential for increasing material or energy recovery and to plan the necessary infrastructure directly to these locations instead of blanket and often ineffective legislative actions. This paper presents an approach for determining the producer-treatment linkage, i.e., provides information about each produced waste, where it was treated, and in what way. Such information is often not available based on historical waste management data as there are repeated waste transfers and often aggregated within a micro-region. The network flow approach is based on an iterative procedure combining a simulation with multi-criteria optimization. The chosen criteria replicate expert estimates in investigated issue such as minimum flow splitting, and minimum transfer micro-regions. A data reconciliation is performed where the deviation from all simulations is minimized, given that the capacity constraints of nodes and arcs resulting from the database must be satisfied. The approach is tested on a generated sample task to evaluate the precision and time complexity of the developed tool. Finally, the presented approach is applied to address a case study in the Czech Republic, within which it is possible to identify treatment location and methods for waste from individual regions.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.