{"title":"利用能量耗散法预测和评估沥青路面碎裂的累积损伤模型","authors":"Kailing Deng, Duanyi Wang, Cheng Tang, Jianwen Situ, Luobin Chen","doi":"10.1007/s11709-024-1074-2","DOIUrl":null,"url":null,"abstract":"<p>Raveling is a common distress of asphalt pavements, defined as the removal of stones from the pavement surface. To predict and assess raveling quantitatively, a cumulative damage model based on an energy dissipation approach has been developed at the meso level. To construct the model, a new test method, the pendulum impact test, was employed to determine the fracture energy of the stone-mastic-stone meso-unit, while digital image analysis and dynamic shear rheometer test were used to acquire the strain rate of specimens and the rheology property of mastic, respectively. Analysis of the model reveals that when the material properties remain constant, the cumulative damage is directly correlated with loading time, loading amplitude, and loading frequency. Specifically, damage increases with superimposed linear and cosine variations over time. A higher stress amplitude results in a more rapidly increasing rate of damage, while a lower load frequency leads to more severe damage within the same loading time. Moreover, an example of the application of the model has been presented, showing that the model can be utilized to estimate failure life due to raveling. The model is able to offer a theoretical foundation for the design and maintenance of anti-raveling asphalt pavements.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cumulative damage model for predicting and assessing raveling in asphalt pavement using an energy dissipation approach\",\"authors\":\"Kailing Deng, Duanyi Wang, Cheng Tang, Jianwen Situ, Luobin Chen\",\"doi\":\"10.1007/s11709-024-1074-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Raveling is a common distress of asphalt pavements, defined as the removal of stones from the pavement surface. To predict and assess raveling quantitatively, a cumulative damage model based on an energy dissipation approach has been developed at the meso level. To construct the model, a new test method, the pendulum impact test, was employed to determine the fracture energy of the stone-mastic-stone meso-unit, while digital image analysis and dynamic shear rheometer test were used to acquire the strain rate of specimens and the rheology property of mastic, respectively. Analysis of the model reveals that when the material properties remain constant, the cumulative damage is directly correlated with loading time, loading amplitude, and loading frequency. Specifically, damage increases with superimposed linear and cosine variations over time. A higher stress amplitude results in a more rapidly increasing rate of damage, while a lower load frequency leads to more severe damage within the same loading time. Moreover, an example of the application of the model has been presented, showing that the model can be utilized to estimate failure life due to raveling. The model is able to offer a theoretical foundation for the design and maintenance of anti-raveling asphalt pavements.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1074-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1074-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A cumulative damage model for predicting and assessing raveling in asphalt pavement using an energy dissipation approach
Raveling is a common distress of asphalt pavements, defined as the removal of stones from the pavement surface. To predict and assess raveling quantitatively, a cumulative damage model based on an energy dissipation approach has been developed at the meso level. To construct the model, a new test method, the pendulum impact test, was employed to determine the fracture energy of the stone-mastic-stone meso-unit, while digital image analysis and dynamic shear rheometer test were used to acquire the strain rate of specimens and the rheology property of mastic, respectively. Analysis of the model reveals that when the material properties remain constant, the cumulative damage is directly correlated with loading time, loading amplitude, and loading frequency. Specifically, damage increases with superimposed linear and cosine variations over time. A higher stress amplitude results in a more rapidly increasing rate of damage, while a lower load frequency leads to more severe damage within the same loading time. Moreover, an example of the application of the model has been presented, showing that the model can be utilized to estimate failure life due to raveling. The model is able to offer a theoretical foundation for the design and maintenance of anti-raveling asphalt pavements.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.