{"title":"多夫戈舍伊-哈里里-武里宁度量和格罗莫夫双曲性","authors":"Qingshan Zhou, Zhoucheng Zheng, Saminathan Ponnusamy, Tiantian Guan","doi":"10.1007/s00013-024-02021-w","DOIUrl":null,"url":null,"abstract":"<div><p>In 2016, Dovgoshey et al. introduced a metric <span>\\(\\zeta \\)</span> on proper subdomains <i>G</i> of Euclidean spaces <span>\\(\\mathbb {R}^k\\)</span> and studied its connection with several hyperbolic type metrics. In this paper, we consider the Gromov hyperbolicity of <span>\\((G,\\zeta )\\)</span> and show that there is a natural quasisymmetric homeomorphism between the Euclidean boundary of <i>G</i> and the Gromov boundary of <span>\\((G,\\zeta )\\)</span> equipped with a visual metric.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dovgoshey–Hariri–Vuorinen’s metric and Gromov hyperbolicity\",\"authors\":\"Qingshan Zhou, Zhoucheng Zheng, Saminathan Ponnusamy, Tiantian Guan\",\"doi\":\"10.1007/s00013-024-02021-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2016, Dovgoshey et al. introduced a metric <span>\\\\(\\\\zeta \\\\)</span> on proper subdomains <i>G</i> of Euclidean spaces <span>\\\\(\\\\mathbb {R}^k\\\\)</span> and studied its connection with several hyperbolic type metrics. In this paper, we consider the Gromov hyperbolicity of <span>\\\\((G,\\\\zeta )\\\\)</span> and show that there is a natural quasisymmetric homeomorphism between the Euclidean boundary of <i>G</i> and the Gromov boundary of <span>\\\\((G,\\\\zeta )\\\\)</span> equipped with a visual metric.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02021-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02021-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
2016 年,Dovgoshey 等人引入了欧几里得空间 \(\mathbb {R}^k\) 的适当子域 G 上的度量 \(\zeta \),并研究了它与几种双曲型度量的联系。在本文中,我们考虑了\((G,\zeta )\)的格罗莫夫双曲性,并证明了在 G 的欧几里得边界和配有视觉度量的\((G,\zeta )\)的格罗莫夫边界之间存在一个自然的类对称同构。
Dovgoshey–Hariri–Vuorinen’s metric and Gromov hyperbolicity
In 2016, Dovgoshey et al. introduced a metric \(\zeta \) on proper subdomains G of Euclidean spaces \(\mathbb {R}^k\) and studied its connection with several hyperbolic type metrics. In this paper, we consider the Gromov hyperbolicity of \((G,\zeta )\) and show that there is a natural quasisymmetric homeomorphism between the Euclidean boundary of G and the Gromov boundary of \((G,\zeta )\) equipped with a visual metric.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.