关于有限群论中的转移的说明

IF 0.5 4区 数学 Q3 MATHEMATICS
Morton E. Harris
{"title":"关于有限群论中的转移的说明","authors":"Morton E. Harris","doi":"10.1007/s00013-024-02000-1","DOIUrl":null,"url":null,"abstract":"<div><p>Finite groups are ubiquitous in mathematics and often arise as symmetry groups of objects. Consequently, finite group structure is of great interest. The transfer is a classical homomorphism of any finite group <i>G</i> into certain commutative sections of <i>G</i>. It has several basic applications in and has inspired new developments in finite group structure. In this article, we present a new characterization of the image of the transfer. Then we obtain new consequences and immediate proofs of old transfer consequences in finite group structure.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on transfer in finite group theory\",\"authors\":\"Morton E. Harris\",\"doi\":\"10.1007/s00013-024-02000-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finite groups are ubiquitous in mathematics and often arise as symmetry groups of objects. Consequently, finite group structure is of great interest. The transfer is a classical homomorphism of any finite group <i>G</i> into certain commutative sections of <i>G</i>. It has several basic applications in and has inspired new developments in finite group structure. In this article, we present a new characterization of the image of the transfer. Then we obtain new consequences and immediate proofs of old transfer consequences in finite group structure.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02000-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02000-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有限群在数学中无处不在,经常作为物体的对称群出现。因此,有限群结构备受关注。转移是将任何有限群 G 转化为 G 的某些交换部分的经典同态。它在有限群结构中有若干基本应用,并启发了有限群结构的新发展。在这篇文章中,我们提出了转移图象的新特征。然后,我们得到了有限群结构中新的结果和旧的转移结果的直接证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on transfer in finite group theory

Finite groups are ubiquitous in mathematics and often arise as symmetry groups of objects. Consequently, finite group structure is of great interest. The transfer is a classical homomorphism of any finite group G into certain commutative sections of G. It has several basic applications in and has inspired new developments in finite group structure. In this article, we present a new characterization of the image of the transfer. Then we obtain new consequences and immediate proofs of old transfer consequences in finite group structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信