$${n}/times {n}$ 算子矩阵数值半径的更精确边界

IF 0.5 4区 数学 Q3 MATHEMATICS
Pintu Bhunia
{"title":"$${n}/times {n}$ 算子矩阵数值半径的更精确边界","authors":"Pintu Bhunia","doi":"10.1007/s00013-024-02017-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(A=\\begin{bmatrix} A_{ij} \\end{bmatrix}\\)</span> be an <span>\\(n\\times n\\)</span> operator matrix, where each <span>\\(A_{ij}\\)</span> is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that <span>\\(w(A)\\le w({\\hat{A}}),\\)</span> where <span>\\({\\hat{A}}=\\begin{bmatrix} {\\hat{a}}_{ij} \\end{bmatrix}\\)</span> is an <span>\\(n\\times n\\)</span> complex matrix, with </p><div><div><span>$$\\begin{aligned} {\\hat{a}}_{ij}= {\\left\\{ \\begin{array}{ll} w(A_{ii}) &amp;{}\\text {when }i=j, \\\\ \\left\\| | A_{ij}|+ | A_{ji}^*| \\right\\| ^{1/2} \\left\\| | A_{ji}|+ | A_{ij}^*| \\right\\| ^{1/2} &amp;{}\\text {when }i&lt;j, \\\\ 0 &amp;{}\\hbox {when}\\ i&gt;j . \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>This is a considerable improvement of the existing bound <span>\\(w(A)\\le w({\\tilde{A}}),\\)</span> where <span>\\({\\tilde{A}}=\\begin{bmatrix} {\\tilde{a}}_{ij} \\end{bmatrix}\\)</span> is an <span>\\(n\\times n\\)</span> complex matrix, with </p><div><div><span>$$\\begin{aligned} {\\tilde{a}}_{ij}= {\\left\\{ \\begin{array}{ll} w(A_{ii}) &amp;{}\\hbox {when}\\ i=j, \\\\ \\Vert A_{ij}\\Vert &amp;{}\\hbox {when}\\ i\\ne j. \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of <i>n</i> pairs of operators, which improves the existing bound.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharper bounds for the numerical radius of \\\\({n}\\\\times {n}\\\\) operator matrices\",\"authors\":\"Pintu Bhunia\",\"doi\":\"10.1007/s00013-024-02017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(A=\\\\begin{bmatrix} A_{ij} \\\\end{bmatrix}\\\\)</span> be an <span>\\\\(n\\\\times n\\\\)</span> operator matrix, where each <span>\\\\(A_{ij}\\\\)</span> is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that <span>\\\\(w(A)\\\\le w({\\\\hat{A}}),\\\\)</span> where <span>\\\\({\\\\hat{A}}=\\\\begin{bmatrix} {\\\\hat{a}}_{ij} \\\\end{bmatrix}\\\\)</span> is an <span>\\\\(n\\\\times n\\\\)</span> complex matrix, with </p><div><div><span>$$\\\\begin{aligned} {\\\\hat{a}}_{ij}= {\\\\left\\\\{ \\\\begin{array}{ll} w(A_{ii}) &amp;{}\\\\text {when }i=j, \\\\\\\\ \\\\left\\\\| | A_{ij}|+ | A_{ji}^*| \\\\right\\\\| ^{1/2} \\\\left\\\\| | A_{ji}|+ | A_{ij}^*| \\\\right\\\\| ^{1/2} &amp;{}\\\\text {when }i&lt;j, \\\\\\\\ 0 &amp;{}\\\\hbox {when}\\\\ i&gt;j . \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>This is a considerable improvement of the existing bound <span>\\\\(w(A)\\\\le w({\\\\tilde{A}}),\\\\)</span> where <span>\\\\({\\\\tilde{A}}=\\\\begin{bmatrix} {\\\\tilde{a}}_{ij} \\\\end{bmatrix}\\\\)</span> is an <span>\\\\(n\\\\times n\\\\)</span> complex matrix, with </p><div><div><span>$$\\\\begin{aligned} {\\\\tilde{a}}_{ij}= {\\\\left\\\\{ \\\\begin{array}{ll} w(A_{ii}) &amp;{}\\\\hbox {when}\\\\ i=j, \\\\\\\\ \\\\Vert A_{ij}\\\\Vert &amp;{}\\\\hbox {when}\\\\ i\\\\ne j. \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of <i>n</i> pairs of operators, which improves the existing bound.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02017-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02017-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(A=begin{bmatrix} A_{ij} \end{bmatrix}\) 是一个(n/times n\) 算子矩阵,其中每个\(A_{ij}\) 都是复希尔伯特空间上的有界线性算子。在其他数值半径边界中,我们证明了(w(A)\le w({/hat{A}}),),其中({/hat{A}}=begin{bmatrix} {\hat{a}}_{ij} \end{bmatrix}}\ )是一个(n 次 n)复矩阵、with $$\begin{aligned} {\hat{a}}_{ij}= {\left\{ \begin{array}{ll} w(A_{ii}) &;{}\text {when }i=j, \left\|| A_{ij}|+ | A_{ji}^*| \right\| ^{1/2} \left\|| A_{ji}|+ | A_{ij}^*| \right\| ^{1/2} &{}\text {when }i<j, \ 0 &{}\hbox {when} i>j .\end{array}\right.}\end{aligned}$$ This is a considerable improvement of the existing bound \(w(A)\le w({\tilde{A}})、\其中 \({\tilde{A}}=\begin{bmatrix} {\tilde{a}}_{ij} \end{bmatrix}} 是一个(n 次 n)复矩阵,$$begin{aligned} {\tilde{a}}_{ij}= {\left\{ \begin{array}{ll} w(A_{ii}) &;{}\hbox {when} i=j,\Vert A_{ij}\Vert &{}\hbox {when} i\ne j.\end{array}\right.}\end{aligned}$$进一步,应用这些边界,我们为两个算子的乘积和算子的换元子建立了数值半径边界。同时,我们还为 n 对算子的乘积之和的谱半径建立了一个上界,它改进了现有的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharper bounds for the numerical radius of \({n}\times {n}\) operator matrices

Let \(A=\begin{bmatrix} A_{ij} \end{bmatrix}\) be an \(n\times n\) operator matrix, where each \(A_{ij}\) is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that \(w(A)\le w({\hat{A}}),\) where \({\hat{A}}=\begin{bmatrix} {\hat{a}}_{ij} \end{bmatrix}\) is an \(n\times n\) complex matrix, with

$$\begin{aligned} {\hat{a}}_{ij}= {\left\{ \begin{array}{ll} w(A_{ii}) &{}\text {when }i=j, \\ \left\| | A_{ij}|+ | A_{ji}^*| \right\| ^{1/2} \left\| | A_{ji}|+ | A_{ij}^*| \right\| ^{1/2} &{}\text {when }i<j, \\ 0 &{}\hbox {when}\ i>j . \end{array}\right. } \end{aligned}$$

This is a considerable improvement of the existing bound \(w(A)\le w({\tilde{A}}),\) where \({\tilde{A}}=\begin{bmatrix} {\tilde{a}}_{ij} \end{bmatrix}\) is an \(n\times n\) complex matrix, with

$$\begin{aligned} {\tilde{a}}_{ij}= {\left\{ \begin{array}{ll} w(A_{ii}) &{}\hbox {when}\ i=j, \\ \Vert A_{ij}\Vert &{}\hbox {when}\ i\ne j. \end{array}\right. } \end{aligned}$$

Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of n pairs of operators, which improves the existing bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信