{"title":"$${n}/times {n}$ 算子矩阵数值半径的更精确边界","authors":"Pintu Bhunia","doi":"10.1007/s00013-024-02017-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(A=\\begin{bmatrix} A_{ij} \\end{bmatrix}\\)</span> be an <span>\\(n\\times n\\)</span> operator matrix, where each <span>\\(A_{ij}\\)</span> is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that <span>\\(w(A)\\le w({\\hat{A}}),\\)</span> where <span>\\({\\hat{A}}=\\begin{bmatrix} {\\hat{a}}_{ij} \\end{bmatrix}\\)</span> is an <span>\\(n\\times n\\)</span> complex matrix, with </p><div><div><span>$$\\begin{aligned} {\\hat{a}}_{ij}= {\\left\\{ \\begin{array}{ll} w(A_{ii}) &{}\\text {when }i=j, \\\\ \\left\\| | A_{ij}|+ | A_{ji}^*| \\right\\| ^{1/2} \\left\\| | A_{ji}|+ | A_{ij}^*| \\right\\| ^{1/2} &{}\\text {when }i<j, \\\\ 0 &{}\\hbox {when}\\ i>j . \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>This is a considerable improvement of the existing bound <span>\\(w(A)\\le w({\\tilde{A}}),\\)</span> where <span>\\({\\tilde{A}}=\\begin{bmatrix} {\\tilde{a}}_{ij} \\end{bmatrix}\\)</span> is an <span>\\(n\\times n\\)</span> complex matrix, with </p><div><div><span>$$\\begin{aligned} {\\tilde{a}}_{ij}= {\\left\\{ \\begin{array}{ll} w(A_{ii}) &{}\\hbox {when}\\ i=j, \\\\ \\Vert A_{ij}\\Vert &{}\\hbox {when}\\ i\\ne j. \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of <i>n</i> pairs of operators, which improves the existing bound.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharper bounds for the numerical radius of \\\\({n}\\\\times {n}\\\\) operator matrices\",\"authors\":\"Pintu Bhunia\",\"doi\":\"10.1007/s00013-024-02017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(A=\\\\begin{bmatrix} A_{ij} \\\\end{bmatrix}\\\\)</span> be an <span>\\\\(n\\\\times n\\\\)</span> operator matrix, where each <span>\\\\(A_{ij}\\\\)</span> is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that <span>\\\\(w(A)\\\\le w({\\\\hat{A}}),\\\\)</span> where <span>\\\\({\\\\hat{A}}=\\\\begin{bmatrix} {\\\\hat{a}}_{ij} \\\\end{bmatrix}\\\\)</span> is an <span>\\\\(n\\\\times n\\\\)</span> complex matrix, with </p><div><div><span>$$\\\\begin{aligned} {\\\\hat{a}}_{ij}= {\\\\left\\\\{ \\\\begin{array}{ll} w(A_{ii}) &{}\\\\text {when }i=j, \\\\\\\\ \\\\left\\\\| | A_{ij}|+ | A_{ji}^*| \\\\right\\\\| ^{1/2} \\\\left\\\\| | A_{ji}|+ | A_{ij}^*| \\\\right\\\\| ^{1/2} &{}\\\\text {when }i<j, \\\\\\\\ 0 &{}\\\\hbox {when}\\\\ i>j . \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>This is a considerable improvement of the existing bound <span>\\\\(w(A)\\\\le w({\\\\tilde{A}}),\\\\)</span> where <span>\\\\({\\\\tilde{A}}=\\\\begin{bmatrix} {\\\\tilde{a}}_{ij} \\\\end{bmatrix}\\\\)</span> is an <span>\\\\(n\\\\times n\\\\)</span> complex matrix, with </p><div><div><span>$$\\\\begin{aligned} {\\\\tilde{a}}_{ij}= {\\\\left\\\\{ \\\\begin{array}{ll} w(A_{ii}) &{}\\\\hbox {when}\\\\ i=j, \\\\\\\\ \\\\Vert A_{ij}\\\\Vert &{}\\\\hbox {when}\\\\ i\\\\ne j. \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of <i>n</i> pairs of operators, which improves the existing bound.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02017-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02017-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sharper bounds for the numerical radius of \({n}\times {n}\) operator matrices
Let \(A=\begin{bmatrix} A_{ij} \end{bmatrix}\) be an \(n\times n\) operator matrix, where each \(A_{ij}\) is a bounded linear operator on a complex Hilbert space. Among other numerical radius bounds, we show that \(w(A)\le w({\hat{A}}),\) where \({\hat{A}}=\begin{bmatrix} {\hat{a}}_{ij} \end{bmatrix}\) is an \(n\times n\) complex matrix, with
This is a considerable improvement of the existing bound \(w(A)\le w({\tilde{A}}),\) where \({\tilde{A}}=\begin{bmatrix} {\tilde{a}}_{ij} \end{bmatrix}\) is an \(n\times n\) complex matrix, with
Further, applying the bounds, we develop the numerical radius bounds for the product of two operators and the commutator of operators. Also, we develop an upper bound for the spectral radius of the sum of the product of n pairs of operators, which improves the existing bound.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.