Ali Hussain, Imania Ghaffar, Sanaullah Sattar, Muhammad Muneeb, Ali Hasan, Balakrishnan Deepanraj
{"title":"革新能源和环境应用的生态友好型催化剂:概述","authors":"Ali Hussain, Imania Ghaffar, Sanaullah Sattar, Muhammad Muneeb, Ali Hasan, Balakrishnan Deepanraj","doi":"10.1007/s11244-024-01976-y","DOIUrl":null,"url":null,"abstract":"<p>Catalysts are essential for accelerating chemical reactions without altering the reaction itself. They can be homogeneous or heterogeneous, with heterogeneous catalysts being more recognized due to their lower energy consumption and cost-effectiveness. Biocatalysts, such as enzymes, are highly selective and efficient. The performance of catalysts is influenced by factors such as ideal porosity, pore width, surface area, and promoters like rare earth metals, alkaline, and alkaline earth metals. The effectiveness of multivalent metals as homogeneous or heterogeneous catalysts depends on a variety of variables, including coexistence, pH, formulation, and others. Currently, Fe-based catalysts, such as magnetite, olivine, and ilmenite, have gained interest due to their lower cost, higher reactivity, and stability. Metal-organic frameworks have gained interest as catalyst supports due to their high porosity, higher surface area, and ability to alter the size and shape of pores. The growing global population has led to environmental pollution and energy crises, necessitating the need for clean, renewable energy sources. This review focuses on the potential and utility of sustainable green catalysts like nanocatalysts and biochar-based catalysts for the efficient and sustainable production of biofuels. In addition, the usage of metal oxides, heteropoly acids, and aluminuminosilicate catalysts for wastewater remediation is also discussed in this review.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"197 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly Catalysts Revolutionizing Energy and Environmental Applications: An Overview\",\"authors\":\"Ali Hussain, Imania Ghaffar, Sanaullah Sattar, Muhammad Muneeb, Ali Hasan, Balakrishnan Deepanraj\",\"doi\":\"10.1007/s11244-024-01976-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Catalysts are essential for accelerating chemical reactions without altering the reaction itself. They can be homogeneous or heterogeneous, with heterogeneous catalysts being more recognized due to their lower energy consumption and cost-effectiveness. Biocatalysts, such as enzymes, are highly selective and efficient. The performance of catalysts is influenced by factors such as ideal porosity, pore width, surface area, and promoters like rare earth metals, alkaline, and alkaline earth metals. The effectiveness of multivalent metals as homogeneous or heterogeneous catalysts depends on a variety of variables, including coexistence, pH, formulation, and others. Currently, Fe-based catalysts, such as magnetite, olivine, and ilmenite, have gained interest due to their lower cost, higher reactivity, and stability. Metal-organic frameworks have gained interest as catalyst supports due to their high porosity, higher surface area, and ability to alter the size and shape of pores. The growing global population has led to environmental pollution and energy crises, necessitating the need for clean, renewable energy sources. This review focuses on the potential and utility of sustainable green catalysts like nanocatalysts and biochar-based catalysts for the efficient and sustainable production of biofuels. In addition, the usage of metal oxides, heteropoly acids, and aluminuminosilicate catalysts for wastewater remediation is also discussed in this review.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-01976-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01976-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Eco-friendly Catalysts Revolutionizing Energy and Environmental Applications: An Overview
Catalysts are essential for accelerating chemical reactions without altering the reaction itself. They can be homogeneous or heterogeneous, with heterogeneous catalysts being more recognized due to their lower energy consumption and cost-effectiveness. Biocatalysts, such as enzymes, are highly selective and efficient. The performance of catalysts is influenced by factors such as ideal porosity, pore width, surface area, and promoters like rare earth metals, alkaline, and alkaline earth metals. The effectiveness of multivalent metals as homogeneous or heterogeneous catalysts depends on a variety of variables, including coexistence, pH, formulation, and others. Currently, Fe-based catalysts, such as magnetite, olivine, and ilmenite, have gained interest due to their lower cost, higher reactivity, and stability. Metal-organic frameworks have gained interest as catalyst supports due to their high porosity, higher surface area, and ability to alter the size and shape of pores. The growing global population has led to environmental pollution and energy crises, necessitating the need for clean, renewable energy sources. This review focuses on the potential and utility of sustainable green catalysts like nanocatalysts and biochar-based catalysts for the efficient and sustainable production of biofuels. In addition, the usage of metal oxides, heteropoly acids, and aluminuminosilicate catalysts for wastewater remediation is also discussed in this review.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.