Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang
{"title":"分布式椭圆最优控制问题的质量块离散化和求解器","authors":"Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang","doi":"10.1002/nla.2564","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to investigate the effects of the use of mass‐lumping in the finite element discretization with mesh size of the reduced first‐order optimality system arising from a standard tracking‐type, distributed elliptic optimal control problem with regularization, involving a regularization (cost) parameter on which the solution depends. We show that mass‐lumping will not affect the error between the desired state and the computed finite element state , but will lead to a Schur‐complement system that allows for a fast matrix‐by‐vector multiplication. We show that the use of the Schur‐complement preconditioned conjugate gradient method in a nested iteration setting leads to an asymptotically optimal solver with respect to the complexity. While the proposed approach is applicable independently of the regularity of the given target, our particular interest is in discontinuous desired states that do not belong to the state space. However, the corresponding control belongs to whereas the cost as . This motivates to use in order to balance the error and the maximal costs we are willing to accept. This can be embedded into a nested iteration process on a sequence of refined finite element meshes in order to control the error and the cost simultaneously.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass‐lumping discretization and solvers for distributed elliptic optimal control problems\",\"authors\":\"Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang\",\"doi\":\"10.1002/nla.2564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to investigate the effects of the use of mass‐lumping in the finite element discretization with mesh size of the reduced first‐order optimality system arising from a standard tracking‐type, distributed elliptic optimal control problem with regularization, involving a regularization (cost) parameter on which the solution depends. We show that mass‐lumping will not affect the error between the desired state and the computed finite element state , but will lead to a Schur‐complement system that allows for a fast matrix‐by‐vector multiplication. We show that the use of the Schur‐complement preconditioned conjugate gradient method in a nested iteration setting leads to an asymptotically optimal solver with respect to the complexity. While the proposed approach is applicable independently of the regularity of the given target, our particular interest is in discontinuous desired states that do not belong to the state space. However, the corresponding control belongs to whereas the cost as . This motivates to use in order to balance the error and the maximal costs we are willing to accept. This can be embedded into a nested iteration process on a sequence of refined finite element meshes in order to control the error and the cost simultaneously.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2564\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2564","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mass‐lumping discretization and solvers for distributed elliptic optimal control problems
The purpose of this article is to investigate the effects of the use of mass‐lumping in the finite element discretization with mesh size of the reduced first‐order optimality system arising from a standard tracking‐type, distributed elliptic optimal control problem with regularization, involving a regularization (cost) parameter on which the solution depends. We show that mass‐lumping will not affect the error between the desired state and the computed finite element state , but will lead to a Schur‐complement system that allows for a fast matrix‐by‐vector multiplication. We show that the use of the Schur‐complement preconditioned conjugate gradient method in a nested iteration setting leads to an asymptotically optimal solver with respect to the complexity. While the proposed approach is applicable independently of the regularity of the given target, our particular interest is in discontinuous desired states that do not belong to the state space. However, the corresponding control belongs to whereas the cost as . This motivates to use in order to balance the error and the maximal costs we are willing to accept. This can be embedded into a nested iteration process on a sequence of refined finite element meshes in order to control the error and the cost simultaneously.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.