线性系统和特征值问题的快速准确随机算法

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Yuji Nakatsukasa, Joel A. Tropp
{"title":"线性系统和特征值问题的快速准确随机算法","authors":"Yuji Nakatsukasa, Joel A. Tropp","doi":"10.1137/23m1565413","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1183-1214, June 2024. <br/> Abstract. This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (“sketching”) to accelerate standard subspace projection methods, such as GMRES and Rayleigh–Ritz. This modification makes it possible to incorporate nontraditional bases for the approximation subspace that are easier to construct. When the basis is numerically full rank, the new algorithms have accuracy similar to classic methods but run faster and may use less storage. For model problems, numerical experiments show large advantages over the optimized MATLAB routines, including a [math] speedup over [math] and a [math] speedup over [math].","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"134 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Accurate Randomized Algorithms for Linear Systems and Eigenvalue Problems\",\"authors\":\"Yuji Nakatsukasa, Joel A. Tropp\",\"doi\":\"10.1137/23m1565413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1183-1214, June 2024. <br/> Abstract. This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (“sketching”) to accelerate standard subspace projection methods, such as GMRES and Rayleigh–Ritz. This modification makes it possible to incorporate nontraditional bases for the approximation subspace that are easier to construct. When the basis is numerically full rank, the new algorithms have accuracy similar to classic methods but run faster and may use less storage. For model problems, numerical experiments show large advantages over the optimized MATLAB routines, including a [math] speedup over [math] and a [math] speedup over [math].\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1565413\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1565413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 2 期,第 1183-1214 页,2024 年 6 月。 摘要本文针对一般线性系统和特征值问题开发了一类算法。这些算法采用快速随机降维("勾勒")来加速标准子空间投影方法,如 GMRES 和 Rayleigh-Ritz。通过这种修改,可以为近似子空间加入更容易构建的非传统基。当基在数值上是满级时,新算法的精度与经典方法相似,但运行速度更快,使用的存储空间也更少。对于模型问题,数值实验表明,优化后的 MATLAB 例程具有很大优势,包括比[math]快[math],比[math]快[math]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Accurate Randomized Algorithms for Linear Systems and Eigenvalue Problems
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1183-1214, June 2024.
Abstract. This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (“sketching”) to accelerate standard subspace projection methods, such as GMRES and Rayleigh–Ritz. This modification makes it possible to incorporate nontraditional bases for the approximation subspace that are easier to construct. When the basis is numerically full rank, the new algorithms have accuracy similar to classic methods but run faster and may use less storage. For model problems, numerical experiments show large advantages over the optimized MATLAB routines, including a [math] speedup over [math] and a [math] speedup over [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信