{"title":"往返算法(BaF):一种用于无人飞行器几何路径规划的新贪婪算法","authors":"Selcuk Aslan","doi":"10.1007/s00607-024-01309-7","DOIUrl":null,"url":null,"abstract":"<p>The autonomous task success of an unmanned aerial vehiclel (UAV) or its military specialization called the unmanned combat aerial vehicle (UCAV) has a direct relationship with the planned path. However, planning a path for a UAV or UCAV system requires solving a challenging problem optimally by considering the different objectives about the enemy threats protecting the battlefield, fuel consumption or battery usage and kinematic constraints on the turning maneuvers. Because of the increasing demands to the UAV systems and game-changing roles played by them, developing new and versatile path planning algorithms become more critical and urgent. In this study, a greedy algorithm named as the Back-and-Forth (BaF) was designed and introduced for solving the path planning problem. The BaF algorithm gets its name from the main strategy where a heuristic approach is responsible to generate two predecessor paths, one of which is calculated from the start point to the target point, while the other is calculated in the reverse direction, and combines the generated paths for utilizing their advantageous line segments when obtaining more safe, short and maneuverable path candidates. The performance of the BaF was investigated over three battlefield scenarios and twelve test cases belonging to them. Moreover, the BaF was integrated into the workflow of a well-known meta-heuristic, artificial bee colony (ABC) algorithm, and detailed experiments were also carried out for evaluating the possible contribution of the BaF on the path planning capabilities of another technique. The results of the experiments showed that the BaF algorithm is able to plan at least promising or generally better paths with the exact consistency than other tested meta-heuristic techniques and runs nine or more times faster as validated through the comparison between the BaF and ABC algorithms. The results of the experiments further proved that the integration of the BaF boosts the performance of the ABC and helps it to outperform all of fifteen competitors for nine of twelve test cases.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"80 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back-and-Forth (BaF): a new greedy algorithm for geometric path planning of unmanned aerial vehicles\",\"authors\":\"Selcuk Aslan\",\"doi\":\"10.1007/s00607-024-01309-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The autonomous task success of an unmanned aerial vehiclel (UAV) or its military specialization called the unmanned combat aerial vehicle (UCAV) has a direct relationship with the planned path. However, planning a path for a UAV or UCAV system requires solving a challenging problem optimally by considering the different objectives about the enemy threats protecting the battlefield, fuel consumption or battery usage and kinematic constraints on the turning maneuvers. Because of the increasing demands to the UAV systems and game-changing roles played by them, developing new and versatile path planning algorithms become more critical and urgent. In this study, a greedy algorithm named as the Back-and-Forth (BaF) was designed and introduced for solving the path planning problem. The BaF algorithm gets its name from the main strategy where a heuristic approach is responsible to generate two predecessor paths, one of which is calculated from the start point to the target point, while the other is calculated in the reverse direction, and combines the generated paths for utilizing their advantageous line segments when obtaining more safe, short and maneuverable path candidates. The performance of the BaF was investigated over three battlefield scenarios and twelve test cases belonging to them. Moreover, the BaF was integrated into the workflow of a well-known meta-heuristic, artificial bee colony (ABC) algorithm, and detailed experiments were also carried out for evaluating the possible contribution of the BaF on the path planning capabilities of another technique. The results of the experiments showed that the BaF algorithm is able to plan at least promising or generally better paths with the exact consistency than other tested meta-heuristic techniques and runs nine or more times faster as validated through the comparison between the BaF and ABC algorithms. The results of the experiments further proved that the integration of the BaF boosts the performance of the ABC and helps it to outperform all of fifteen competitors for nine of twelve test cases.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01309-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01309-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Back-and-Forth (BaF): a new greedy algorithm for geometric path planning of unmanned aerial vehicles
The autonomous task success of an unmanned aerial vehiclel (UAV) or its military specialization called the unmanned combat aerial vehicle (UCAV) has a direct relationship with the planned path. However, planning a path for a UAV or UCAV system requires solving a challenging problem optimally by considering the different objectives about the enemy threats protecting the battlefield, fuel consumption or battery usage and kinematic constraints on the turning maneuvers. Because of the increasing demands to the UAV systems and game-changing roles played by them, developing new and versatile path planning algorithms become more critical and urgent. In this study, a greedy algorithm named as the Back-and-Forth (BaF) was designed and introduced for solving the path planning problem. The BaF algorithm gets its name from the main strategy where a heuristic approach is responsible to generate two predecessor paths, one of which is calculated from the start point to the target point, while the other is calculated in the reverse direction, and combines the generated paths for utilizing their advantageous line segments when obtaining more safe, short and maneuverable path candidates. The performance of the BaF was investigated over three battlefield scenarios and twelve test cases belonging to them. Moreover, the BaF was integrated into the workflow of a well-known meta-heuristic, artificial bee colony (ABC) algorithm, and detailed experiments were also carried out for evaluating the possible contribution of the BaF on the path planning capabilities of another technique. The results of the experiments showed that the BaF algorithm is able to plan at least promising or generally better paths with the exact consistency than other tested meta-heuristic techniques and runs nine or more times faster as validated through the comparison between the BaF and ABC algorithms. The results of the experiments further proved that the integration of the BaF boosts the performance of the ABC and helps it to outperform all of fifteen competitors for nine of twelve test cases.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.