通过对抗性域适应在不同区块链上检测网络钓鱼行为

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chuyi Yan, Xueying Han, Yan Zhu, Dan Du, Zhigang Lu, Yuling Liu
{"title":"通过对抗性域适应在不同区块链上检测网络钓鱼行为","authors":"Chuyi Yan, Xueying Han, Yan Zhu, Dan Du, Zhigang Lu, Yuling Liu","doi":"10.1186/s42400-024-00237-5","DOIUrl":null,"url":null,"abstract":"<p>Despite the growing attention on blockchain, phishing activities have surged, particularly on newly established chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-an automatic phishing detection model utilizing <i>a</i>dversarial <i>d</i>omain <i>a</i>daptive learning which symbolizes the method’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strategy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information, and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin, and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new chains after knowledge transfer, surpassing existing detection methods.</p>","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":"196 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phishing behavior detection on different blockchains via adversarial domain adaptation\",\"authors\":\"Chuyi Yan, Xueying Han, Yan Zhu, Dan Du, Zhigang Lu, Yuling Liu\",\"doi\":\"10.1186/s42400-024-00237-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the growing attention on blockchain, phishing activities have surged, particularly on newly established chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-an automatic phishing detection model utilizing <i>a</i>dversarial <i>d</i>omain <i>a</i>daptive learning which symbolizes the method’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strategy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information, and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin, and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new chains after knowledge transfer, surpassing existing detection methods.</p>\",\"PeriodicalId\":36402,\"journal\":{\"name\":\"Cybersecurity\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42400-024-00237-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42400-024-00237-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管区块链日益受到关注,但网络钓鱼活动却激增,尤其是在新建立的链上。考虑到新链早期智能有限这一挑战,我们提出了 ADA-Spear--一种利用对抗性域自适应学习的自动网络钓鱼检测模型,它象征着该方法能够穿透各种异构区块链进行网络钓鱼检测。该模型能在可靠标签有限的新链中有效识别网络钓鱼行为,解决分布漂移严重、属性重叠度低、链间连接有限等难题。我们的方法包括:对齐异构链的子图构建策略、捕捉时间和空间信息的分层深度学习编码器,以及端到端模型训练中的集成对抗域自适应学习。在以太坊、比特币和 EOSIO 环境中的验证证明了 ADA-Spear 的有效性,在知识转移后,新链的平均 F1 得分为 77.41,超过了现有的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phishing behavior detection on different blockchains via adversarial domain adaptation

Phishing behavior detection on different blockchains via adversarial domain adaptation

Despite the growing attention on blockchain, phishing activities have surged, particularly on newly established chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-an automatic phishing detection model utilizing adversarial domain adaptive learning which symbolizes the method’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strategy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information, and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin, and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new chains after knowledge transfer, surpassing existing detection methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信