{"title":"封闭双曲 3 轨道的门格尔曲线和球面 CR 均匀化","authors":"Jiming Ma, Baohua Xie","doi":"10.1007/s10711-024-00934-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G_{6,3}\\)</span> be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation <span>\\(\\rho \\)</span> of <span>\\(G_{6,3}\\)</span> into <span>\\(\\textbf{PU}(2,1)\\)</span>. We show the 3-orbifold at infinity of <span>\\(\\rho (G_{6,3})\\)</span> is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the <span>\\({\\mathbb {Z}}_3\\)</span>-coned chain-link <span>\\(C(6,-2)\\)</span>. This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"131 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Menger curve and spherical CR uniformization of a closed hyperbolic 3-orbifold\",\"authors\":\"Jiming Ma, Baohua Xie\",\"doi\":\"10.1007/s10711-024-00934-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(G_{6,3}\\\\)</span> be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation <span>\\\\(\\\\rho \\\\)</span> of <span>\\\\(G_{6,3}\\\\)</span> into <span>\\\\(\\\\textbf{PU}(2,1)\\\\)</span>. We show the 3-orbifold at infinity of <span>\\\\(\\\\rho (G_{6,3})\\\\)</span> is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the <span>\\\\({\\\\mathbb {Z}}_3\\\\)</span>-coned chain-link <span>\\\\(C(6,-2)\\\\)</span>. This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00934-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00934-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \(G_{6,3}\) 是一个边界为门格尔曲线的双曲多边形群。Granier (Groupes discrets en géométrie hyperbolique-aspects effectifs, Université de Fribourg, 2015)构造了一个离散、凸cocompact和忠实的表示 \(\rho \) of \(G_{6,3}\) into \(\textbf{PU}(2,1)\).我们证明了\(\rho (G_{6,3})\)的无穷远处的3-orbifold是一个封闭的双曲3-orbifold,它的底层空间是3球,奇点位置是\({\mathbb {Z}}_3\)-coned chain-link \(C(6,-2)\)。这回答了卡波维奇猜想 10.6 的第二部分(见卡波维奇 (in. Kapovich) 的论文):In the tradition of thurston II.Geometry and groups, Springer, Cham, 2022)中的猜想 10.6 的第二部分,同时也是继施瓦茨(Invent Math 151(2):221-295, 2003)中的第一个例子之后,第二个明确的闭双曲 3-orbifold 的例子。
The Menger curve and spherical CR uniformization of a closed hyperbolic 3-orbifold
Let \(G_{6,3}\) be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation \(\rho \) of \(G_{6,3}\) into \(\textbf{PU}(2,1)\). We show the 3-orbifold at infinity of \(\rho (G_{6,3})\) is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the \({\mathbb {Z}}_3\)-coned chain-link \(C(6,-2)\). This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.