{"title":"封闭双曲 3 轨道的门格尔曲线和球面 CR 均匀化","authors":"Jiming Ma, Baohua Xie","doi":"10.1007/s10711-024-00934-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G_{6,3}\\)</span> be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation <span>\\(\\rho \\)</span> of <span>\\(G_{6,3}\\)</span> into <span>\\(\\textbf{PU}(2,1)\\)</span>. We show the 3-orbifold at infinity of <span>\\(\\rho (G_{6,3})\\)</span> is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the <span>\\({\\mathbb {Z}}_3\\)</span>-coned chain-link <span>\\(C(6,-2)\\)</span>. This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Menger curve and spherical CR uniformization of a closed hyperbolic 3-orbifold\",\"authors\":\"Jiming Ma, Baohua Xie\",\"doi\":\"10.1007/s10711-024-00934-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(G_{6,3}\\\\)</span> be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation <span>\\\\(\\\\rho \\\\)</span> of <span>\\\\(G_{6,3}\\\\)</span> into <span>\\\\(\\\\textbf{PU}(2,1)\\\\)</span>. We show the 3-orbifold at infinity of <span>\\\\(\\\\rho (G_{6,3})\\\\)</span> is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the <span>\\\\({\\\\mathbb {Z}}_3\\\\)</span>-coned chain-link <span>\\\\(C(6,-2)\\\\)</span>. This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00934-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00934-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 \(G_{6,3}\) 是一个边界为门格尔曲线的双曲多边形群。Granier (Groupes discrets en géométrie hyperbolique-aspects effectifs, Université de Fribourg, 2015)构造了一个离散、凸cocompact和忠实的表示 \(\rho \) of \(G_{6,3}\) into \(\textbf{PU}(2,1)\).我们证明了\(\rho (G_{6,3})\)的无穷远处的3-orbifold是一个封闭的双曲3-orbifold,它的底层空间是3球,奇点位置是\({\mathbb {Z}}_3\)-coned chain-link \(C(6,-2)\)。这回答了卡波维奇猜想 10.6 的第二部分(见卡波维奇 (in. Kapovich) 的论文):In the tradition of thurston II.Geometry and groups, Springer, Cham, 2022)中的猜想 10.6 的第二部分,同时也是继施瓦茨(Invent Math 151(2):221-295, 2003)中的第一个例子之后,第二个明确的闭双曲 3-orbifold 的例子。
The Menger curve and spherical CR uniformization of a closed hyperbolic 3-orbifold
Let \(G_{6,3}\) be a hyperbolic polygon-group with boundary the Menger curve. Granier (Groupes discrets en géométrie hyperbolique—aspects effectifs, Université de Fribourg, 2015) constructed a discrete, convex cocompact and faithful representation \(\rho \) of \(G_{6,3}\) into \(\textbf{PU}(2,1)\). We show the 3-orbifold at infinity of \(\rho (G_{6,3})\) is a closed hyperbolic 3-orbifold, with underlying space the 3-sphere and singular locus the \({\mathbb {Z}}_3\)-coned chain-link \(C(6,-2)\). This answers the second part of Kapovich’s Conjecture 10.6 in Kapovich (in: In the tradition of thurston II. Geometry and groups, Springer, Cham, 2022), and it also provides the second explicit example of a closed hyperbolic 3-orbifold that admits a uniformizable spherical CR-structure after Schwartz’s first example in Schwartz (Invent Math 151(2):221–295, 2003).