{"title":"紧凑黎曼面上的 Lie algebroid 连接标准","authors":"Indranil Biswas, Pradip Kumar, Anoop Singh","doi":"10.1007/s10711-024-00938-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact connected Riemann surface and <span>\\((V,\\, \\phi )\\)</span> a holomorphic Lie algebroid on <i>X</i> such that the holomorphic vector bundle <i>V</i> is stable. We give a necessary and sufficient condition on holomorphic vector bundles <i>E</i> on <i>X</i> to admit a Lie algebroid connection.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A criterion for Lie algebroid connections on a compact Riemann surface\",\"authors\":\"Indranil Biswas, Pradip Kumar, Anoop Singh\",\"doi\":\"10.1007/s10711-024-00938-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a compact connected Riemann surface and <span>\\\\((V,\\\\, \\\\phi )\\\\)</span> a holomorphic Lie algebroid on <i>X</i> such that the holomorphic vector bundle <i>V</i> is stable. We give a necessary and sufficient condition on holomorphic vector bundles <i>E</i> on <i>X</i> to admit a Lie algebroid connection.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00938-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00938-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个紧凑相连的黎曼曲面,((V,\, \phi )\)是 X 上的全形 Lie algebroid,使得全形向量束 V 是稳定的。我们给出了 X 上全形向量束 E 承认 Lie algebroid 连接的必要条件和充分条件。
A criterion for Lie algebroid connections on a compact Riemann surface
Let X be a compact connected Riemann surface and \((V,\, \phi )\) a holomorphic Lie algebroid on X such that the holomorphic vector bundle V is stable. We give a necessary and sufficient condition on holomorphic vector bundles E on X to admit a Lie algebroid connection.