熵与经济学

Martin Pomares Calero
{"title":"熵与经济学","authors":"Martin Pomares Calero","doi":"arxiv-2407.00022","DOIUrl":null,"url":null,"abstract":"Entropy is a very useful concept from physics that tries to explain how a\nsystem behaves from a point of view of the thermodynamics. However, there are\ntwo ways to explain entropy, and it depends on if we are studying a microsystem\nor a microsystem. From a macroscopically point of view, it is important to\ndescribe if the system is a reversible system or not. However, form the\nmicroscopically point of view, the concept of chaos is related to entropy. In\nsuch case, entropy measures the amount of disorder into the system. Otherwise,\nthe idea of connecting at the same time the analysis of the macro and micro\nsystem with the use of entropy it is not very common.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Economics\",\"authors\":\"Martin Pomares Calero\",\"doi\":\"arxiv-2407.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entropy is a very useful concept from physics that tries to explain how a\\nsystem behaves from a point of view of the thermodynamics. However, there are\\ntwo ways to explain entropy, and it depends on if we are studying a microsystem\\nor a microsystem. From a macroscopically point of view, it is important to\\ndescribe if the system is a reversible system or not. However, form the\\nmicroscopically point of view, the concept of chaos is related to entropy. In\\nsuch case, entropy measures the amount of disorder into the system. Otherwise,\\nthe idea of connecting at the same time the analysis of the macro and micro\\nsystem with the use of entropy it is not very common.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

熵是物理学中一个非常有用的概念,它试图从热力学的角度解释系统的行为方式。然而,解释熵有两种方法,这取决于我们研究的是微观系统还是微观系统。从宏观角度来看,重要的是要说明系统是否是可逆系统。然而,从微观角度来看,混沌的概念与熵有关。在这种情况下,熵衡量系统的无序程度。否则,同时利用熵来分析宏观和微观系统的想法并不常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy and Economics
Entropy is a very useful concept from physics that tries to explain how a system behaves from a point of view of the thermodynamics. However, there are two ways to explain entropy, and it depends on if we are studying a microsystem or a microsystem. From a macroscopically point of view, it is important to describe if the system is a reversible system or not. However, form the microscopically point of view, the concept of chaos is related to entropy. In such case, entropy measures the amount of disorder into the system. Otherwise, the idea of connecting at the same time the analysis of the macro and micro system with the use of entropy it is not very common.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信