Megan Wawro, Andi Pina, John R. Thompson, Zeynep Topdemir, Kevin Watson
{"title":"学生对线性代数和量子力学中自变量的解释","authors":"Megan Wawro, Andi Pina, John R. Thompson, Zeynep Topdemir, Kevin Watson","doi":"10.1007/s40753-024-00241-7","DOIUrl":null,"url":null,"abstract":"<p>This work investigates how students interpret various eigenequations in different contexts for <span>\\(2 \\times 2\\)</span> matrices: <span>\\(A\\vec {x}=\\lambda \\vec {x}\\)</span> in mathematics and either <span>\\(\\hat{S}_x| + \\rangle _x=\\frac{\\hbar }{2}| + \\rangle _x\\)</span> or <span>\\(\\hat{S}_z| + \\rangle =\\frac{\\hbar }{2}| + \\rangle\\)</span> in quantum mechanics. Data were collected from two sources in a senior-level quantum mechanics course; one is video, transcript and written work of individual, semi-structured interviews; the second is written work from the same course three years later. We found two principal ways in which students reasoned about the equal sign within the mathematics eigenequation and at times within the quantum mechanical eigenequations: with a functional interpretation and/or a relational interpretation. Second, we found three distinct ways in which students explained how they made sense of the physical meaning conveyed by the quantum mechanical eigenequations: via a measurement interpretation, potential measurement interpretation, or correspondence interpretation of the equation. Finally, we present two themes that emerged in the ways that students compared the different eigenequations: attention to form and attention to conceptual (in)compatibility. These findings are discussed in relation to relevant literature, and their instructional implications are also explored.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student Interpretations of Eigenequations in Linear Algebra and Quantum Mechanics\",\"authors\":\"Megan Wawro, Andi Pina, John R. Thompson, Zeynep Topdemir, Kevin Watson\",\"doi\":\"10.1007/s40753-024-00241-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work investigates how students interpret various eigenequations in different contexts for <span>\\\\(2 \\\\times 2\\\\)</span> matrices: <span>\\\\(A\\\\vec {x}=\\\\lambda \\\\vec {x}\\\\)</span> in mathematics and either <span>\\\\(\\\\hat{S}_x| + \\\\rangle _x=\\\\frac{\\\\hbar }{2}| + \\\\rangle _x\\\\)</span> or <span>\\\\(\\\\hat{S}_z| + \\\\rangle =\\\\frac{\\\\hbar }{2}| + \\\\rangle\\\\)</span> in quantum mechanics. Data were collected from two sources in a senior-level quantum mechanics course; one is video, transcript and written work of individual, semi-structured interviews; the second is written work from the same course three years later. We found two principal ways in which students reasoned about the equal sign within the mathematics eigenequation and at times within the quantum mechanical eigenequations: with a functional interpretation and/or a relational interpretation. Second, we found three distinct ways in which students explained how they made sense of the physical meaning conveyed by the quantum mechanical eigenequations: via a measurement interpretation, potential measurement interpretation, or correspondence interpretation of the equation. Finally, we present two themes that emerged in the ways that students compared the different eigenequations: attention to form and attention to conceptual (in)compatibility. These findings are discussed in relation to relevant literature, and their instructional implications are also explored.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40753-024-00241-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40753-024-00241-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Student Interpretations of Eigenequations in Linear Algebra and Quantum Mechanics
This work investigates how students interpret various eigenequations in different contexts for \(2 \times 2\) matrices: \(A\vec {x}=\lambda \vec {x}\) in mathematics and either \(\hat{S}_x| + \rangle _x=\frac{\hbar }{2}| + \rangle _x\) or \(\hat{S}_z| + \rangle =\frac{\hbar }{2}| + \rangle\) in quantum mechanics. Data were collected from two sources in a senior-level quantum mechanics course; one is video, transcript and written work of individual, semi-structured interviews; the second is written work from the same course three years later. We found two principal ways in which students reasoned about the equal sign within the mathematics eigenequation and at times within the quantum mechanical eigenequations: with a functional interpretation and/or a relational interpretation. Second, we found three distinct ways in which students explained how they made sense of the physical meaning conveyed by the quantum mechanical eigenequations: via a measurement interpretation, potential measurement interpretation, or correspondence interpretation of the equation. Finally, we present two themes that emerged in the ways that students compared the different eigenequations: attention to form and attention to conceptual (in)compatibility. These findings are discussed in relation to relevant literature, and their instructional implications are also explored.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.