带保护通道和保护缓冲区的 M/M/C/K 重审队列的渐近上限

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Nesrine Zidani, Natalia Djellab
{"title":"带保护通道和保护缓冲区的 M/M/C/K 重审队列的渐近上限","authors":"Nesrine Zidani, Natalia Djellab","doi":"10.1007/s00186-024-00865-0","DOIUrl":null,"url":null,"abstract":"<p>The paper deals with Markovian multiserver retrial queuing system with exponential abandonments, two types of arrivals: Fresh calls and Handover calls and waiting places in the service area. This model can be used for analysing a cellular mobile network, where the service area is divided into cells. In this paper, the number of customers in the system and in the orbit form a level-dependent quasi-birth-and-death process, whose stationary distribution is expressed in terms of a sequence of rate matrices. First, we derive the Taylor series expansion for nonzero elements of the rate matrices. Then, by the expansion results, we obtain an asymptotic upper bound for the stationary distribution of both the number of busy channels and the number of customers in the orbit. Furthermore, we present some numerical results to examine the performance of the system.</p>","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"168 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic upper bounds for an M/M/C/K retrial queue with a guard channel and guard buffer\",\"authors\":\"Nesrine Zidani, Natalia Djellab\",\"doi\":\"10.1007/s00186-024-00865-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper deals with Markovian multiserver retrial queuing system with exponential abandonments, two types of arrivals: Fresh calls and Handover calls and waiting places in the service area. This model can be used for analysing a cellular mobile network, where the service area is divided into cells. In this paper, the number of customers in the system and in the orbit form a level-dependent quasi-birth-and-death process, whose stationary distribution is expressed in terms of a sequence of rate matrices. First, we derive the Taylor series expansion for nonzero elements of the rate matrices. Then, by the expansion results, we obtain an asymptotic upper bound for the stationary distribution of both the number of busy channels and the number of customers in the orbit. Furthermore, we present some numerical results to examine the performance of the system.</p>\",\"PeriodicalId\":49862,\"journal\":{\"name\":\"Mathematical Methods of Operations Research\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-024-00865-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00865-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文论述的是马尔可夫多服务器重试排队系统,该系统具有指数放弃、两种到达类型:新呼叫和移交呼叫以及服务区的等待位置。该模型可用于分析蜂窝移动网络,其中服务区被划分为多个小区。在本文中,系统中和轨道上的客户数构成了一个与等级相关的准生死过程,其静态分布用速率矩阵序列表示。首先,我们推导出速率矩阵非零元素的泰勒级数展开。然后,根据扩展结果,我们得到了繁忙信道数和轨道中客户数的静态分布的渐近上限。此外,我们还给出了一些数值结果,以检验系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotic upper bounds for an M/M/C/K retrial queue with a guard channel and guard buffer

Asymptotic upper bounds for an M/M/C/K retrial queue with a guard channel and guard buffer

The paper deals with Markovian multiserver retrial queuing system with exponential abandonments, two types of arrivals: Fresh calls and Handover calls and waiting places in the service area. This model can be used for analysing a cellular mobile network, where the service area is divided into cells. In this paper, the number of customers in the system and in the orbit form a level-dependent quasi-birth-and-death process, whose stationary distribution is expressed in terms of a sequence of rate matrices. First, we derive the Taylor series expansion for nonzero elements of the rate matrices. Then, by the expansion results, we obtain an asymptotic upper bound for the stationary distribution of both the number of busy channels and the number of customers in the orbit. Furthermore, we present some numerical results to examine the performance of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience. All papers are refereed. The emphasis is on originality, quality, and importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信