通过多级临界点聚合进行稳健的点云法线估算

Jun Zhou, Yaoshun Li, Mingjie Wang, Nannan Li, Zhiyang Li, Weixiao Wang
{"title":"通过多级临界点聚合进行稳健的点云法线估算","authors":"Jun Zhou, Yaoshun Li, Mingjie Wang, Nannan Li, Zhiyang Li, Weixiao Wang","doi":"10.1007/s00371-024-03532-x","DOIUrl":null,"url":null,"abstract":"<p>We propose a multi-level critical point aggregation architecture based on a graph attention mechanism for 3D point cloud normal estimation, which can efficiently focus on locally important points during the feature extraction process. Wherein, the local feature aggregation (LFA) module and the global feature refinement (GFR) module are designed to accurately identify critical points which are geometrically closer to tangent plane for surface fitting at both local and global levels. Specifically, the LFA module captures significant local information from neighboring points with strong geometric correlations to the query point in the low-level feature space. The GFR module enhances the exploration of global geometric correlations in the high-level feature space, allowing the network to focus precisely on critical global points. To address indistinguishable features in the low-level space, we implement a stacked LFA structure. This structure transfers essential adjacent information across multiple levels, enabling deep feature aggregation layer by layer. Then the GFR module can leverage robust local geometric information and refines it into comprehensive global features. Our multi-level point-aware architecture improves the stability and accuracy of surface fitting and normal estimation, even in the presence of sharp features, high noise or anisotropic structures. Experimental results demonstrate that our method is competitive and achieves stable performance on both synthetic and real-world datasets. Code is available at https://github.com/CharlesLee96/NormalEstimation.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust point cloud normal estimation via multi-level critical point aggregation\",\"authors\":\"Jun Zhou, Yaoshun Li, Mingjie Wang, Nannan Li, Zhiyang Li, Weixiao Wang\",\"doi\":\"10.1007/s00371-024-03532-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a multi-level critical point aggregation architecture based on a graph attention mechanism for 3D point cloud normal estimation, which can efficiently focus on locally important points during the feature extraction process. Wherein, the local feature aggregation (LFA) module and the global feature refinement (GFR) module are designed to accurately identify critical points which are geometrically closer to tangent plane for surface fitting at both local and global levels. Specifically, the LFA module captures significant local information from neighboring points with strong geometric correlations to the query point in the low-level feature space. The GFR module enhances the exploration of global geometric correlations in the high-level feature space, allowing the network to focus precisely on critical global points. To address indistinguishable features in the low-level space, we implement a stacked LFA structure. This structure transfers essential adjacent information across multiple levels, enabling deep feature aggregation layer by layer. Then the GFR module can leverage robust local geometric information and refines it into comprehensive global features. Our multi-level point-aware architecture improves the stability and accuracy of surface fitting and normal estimation, even in the presence of sharp features, high noise or anisotropic structures. Experimental results demonstrate that our method is competitive and achieves stable performance on both synthetic and real-world datasets. Code is available at https://github.com/CharlesLee96/NormalEstimation.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03532-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03532-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们针对三维点云法线估算提出了一种基于图关注机制的多级临界点聚合架构,该架构可在特征提取过程中有效地关注局部重要点。其中,局部特征聚合(LFA)模块和全局特征细化(GFR)模块旨在准确识别几何上更接近切平面的临界点,以便在局部和全局层面进行曲面拟合。具体来说,LFA 模块从低层次特征空间中与查询点具有较强几何相关性的邻近点捕捉重要的局部信息。GFR 模块增强了对高层特征空间中全局几何相关性的探索,使网络能够精确地聚焦于关键的全局点。为了解决低层空间中难以区分的特征,我们采用了堆叠式 LFA 结构。这种结构可以在多个层次上传输重要的相邻信息,从而实现逐层的深度特征聚合。然后,GFR 模块可以利用强大的局部几何信息,并将其提炼为全面的全局特征。我们的多层次点感知架构提高了曲面拟合和法线估计的稳定性和准确性,即使在存在尖锐特征、高噪声或各向异性结构的情况下也是如此。实验结果表明,我们的方法很有竞争力,在合成数据集和实际数据集上都能取得稳定的性能。代码见 https://github.com/CharlesLee96/NormalEstimation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust point cloud normal estimation via multi-level critical point aggregation

Robust point cloud normal estimation via multi-level critical point aggregation

We propose a multi-level critical point aggregation architecture based on a graph attention mechanism for 3D point cloud normal estimation, which can efficiently focus on locally important points during the feature extraction process. Wherein, the local feature aggregation (LFA) module and the global feature refinement (GFR) module are designed to accurately identify critical points which are geometrically closer to tangent plane for surface fitting at both local and global levels. Specifically, the LFA module captures significant local information from neighboring points with strong geometric correlations to the query point in the low-level feature space. The GFR module enhances the exploration of global geometric correlations in the high-level feature space, allowing the network to focus precisely on critical global points. To address indistinguishable features in the low-level space, we implement a stacked LFA structure. This structure transfers essential adjacent information across multiple levels, enabling deep feature aggregation layer by layer. Then the GFR module can leverage robust local geometric information and refines it into comprehensive global features. Our multi-level point-aware architecture improves the stability and accuracy of surface fitting and normal estimation, even in the presence of sharp features, high noise or anisotropic structures. Experimental results demonstrate that our method is competitive and achieves stable performance on both synthetic and real-world datasets. Code is available at https://github.com/CharlesLee96/NormalEstimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信