k 样本多项式问题中参数函数的精确置信区间

Michael C Sachs, Erin E Gabriel, Michael P Fay
{"title":"k 样本多项式问题中参数函数的精确置信区间","authors":"Michael C Sachs, Erin E Gabriel, Michael P Fay","doi":"arxiv-2406.19141","DOIUrl":null,"url":null,"abstract":"When the target of inference is a real-valued function of probability\nparameters in the k-sample multinomial problem, variance estimation may be\nchallenging. In small samples, methods like the nonparametric bootstrap or\ndelta method may perform poorly. We propose a novel general method in this\nsetting for computing exact p-values and confidence intervals which means that\ntype I error rates are correctly bounded and confidence intervals have at least\nnominal coverage at all sample sizes. Our method is applicable to any\nreal-valued function of multinomial probabilities, accommodating an arbitrary\nnumber of samples with varying category counts. We describe the method and\nprovide an implementation of it in R, with some computational optimization to\nensure broad applicability. Simulations demonstrate our method's ability to\nmaintain correct coverage rates in settings where the nonparametric bootstrap\nfails.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact confidence intervals for functions of parameters in the k-sample multinomial problem\",\"authors\":\"Michael C Sachs, Erin E Gabriel, Michael P Fay\",\"doi\":\"arxiv-2406.19141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the target of inference is a real-valued function of probability\\nparameters in the k-sample multinomial problem, variance estimation may be\\nchallenging. In small samples, methods like the nonparametric bootstrap or\\ndelta method may perform poorly. We propose a novel general method in this\\nsetting for computing exact p-values and confidence intervals which means that\\ntype I error rates are correctly bounded and confidence intervals have at least\\nnominal coverage at all sample sizes. Our method is applicable to any\\nreal-valued function of multinomial probabilities, accommodating an arbitrary\\nnumber of samples with varying category counts. We describe the method and\\nprovide an implementation of it in R, with some computational optimization to\\nensure broad applicability. Simulations demonstrate our method's ability to\\nmaintain correct coverage rates in settings where the nonparametric bootstrap\\nfails.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当推断的目标是 k 样本多项式问题中概率参数的实值函数时,方差估计可能会很困难。在小样本中,像非参数自举阶梯法这样的方法可能会表现不佳。在这种情况下,我们提出了一种计算精确 p 值和置信区间的新颖通用方法,这意味着在所有样本大小下,I 型误差率都能得到正确的约束,置信区间至少有名义覆盖率。我们的方法适用于多项式概率的任何实值函数,可容纳任意数量的具有不同类别计数的样本。我们描述了该方法,并提供了它在 R 语言中的实现,同时进行了一些计算优化,以确保广泛的适用性。模拟证明了我们的方法能够在非参数引导法失效的情况下保持正确的覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact confidence intervals for functions of parameters in the k-sample multinomial problem
When the target of inference is a real-valued function of probability parameters in the k-sample multinomial problem, variance estimation may be challenging. In small samples, methods like the nonparametric bootstrap or delta method may perform poorly. We propose a novel general method in this setting for computing exact p-values and confidence intervals which means that type I error rates are correctly bounded and confidence intervals have at least nominal coverage at all sample sizes. Our method is applicable to any real-valued function of multinomial probabilities, accommodating an arbitrary number of samples with varying category counts. We describe the method and provide an implementation of it in R, with some computational optimization to ensure broad applicability. Simulations demonstrate our method's ability to maintain correct coverage rates in settings where the nonparametric bootstrap fails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信