从无高斯成分的莱维过程采样的弗格森-克拉斯算法的通用近似值

Dawid Bernaciak, Jim E. Griffin
{"title":"从无高斯成分的莱维过程采样的弗格森-克拉斯算法的通用近似值","authors":"Dawid Bernaciak, Jim E. Griffin","doi":"arxiv-2407.01483","DOIUrl":null,"url":null,"abstract":"We propose a general-purpose approximation to the Ferguson-Klass algorithm\nfor generating samples from L\\'evy processes without Gaussian components. We\nshow that the proposed method is more than 1000 times faster than the standard\nFerguson-Klass algorithm without a significant loss of precision. This method\ncan open an avenue for computationally efficient and scalable Bayesian\nnonparametric models which go beyond conjugacy assumptions, as demonstrated in\nthe examples section.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A General Purpose Approximation to the Ferguson-Klass Algorithm for Sampling from Lévy Processes Without Gaussian Components\",\"authors\":\"Dawid Bernaciak, Jim E. Griffin\",\"doi\":\"arxiv-2407.01483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general-purpose approximation to the Ferguson-Klass algorithm\\nfor generating samples from L\\\\'evy processes without Gaussian components. We\\nshow that the proposed method is more than 1000 times faster than the standard\\nFerguson-Klass algorithm without a significant loss of precision. This method\\ncan open an avenue for computationally efficient and scalable Bayesian\\nnonparametric models which go beyond conjugacy assumptions, as demonstrated in\\nthe examples section.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通用的近似弗格森-克拉斯算法,用于从没有高斯成分的 L\'evy 过程中生成样本。结果表明,所提出的方法比标准的弗格森-克拉斯算法快 1000 多倍,而且精度没有明显下降。正如示例部分所展示的,这种方法可以为计算高效、可扩展的贝叶斯非参数模型开辟一条途径,这些模型超越了共轭假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A General Purpose Approximation to the Ferguson-Klass Algorithm for Sampling from Lévy Processes Without Gaussian Components
We propose a general-purpose approximation to the Ferguson-Klass algorithm for generating samples from L\'evy processes without Gaussian components. We show that the proposed method is more than 1000 times faster than the standard Ferguson-Klass algorithm without a significant loss of precision. This method can open an avenue for computationally efficient and scalable Bayesian nonparametric models which go beyond conjugacy assumptions, as demonstrated in the examples section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信