{"title":"$$\\imath $$ 加权投影线的霍尔代数和量子对称对 II:注入性","authors":"Ming Lu, Shiquan Ruan","doi":"10.1007/s00209-024-03528-2","DOIUrl":null,"url":null,"abstract":"<p>We show that the morphism <span>\\(\\Omega \\)</span> from the <span>\\(\\imath \\)</span>quantum loop algebra <span>\\({}^{\\text {Dr}}\\widetilde{{{\\textbf{U}}}}^\\imath (L{\\mathfrak {g}})\\)</span> of split type to the <span>\\(\\imath \\)</span>Hall algebra of the weighted projective line is injective if <span>\\({\\mathfrak {g}}\\)</span> is of finite or affine type. As a byproduct, we use the whole <span>\\(\\imath \\)</span>Hall algebra of the cyclic quiver <span>\\(C_n\\)</span> to realize the <span>\\(\\imath \\)</span>quantum loop algebra of affine <span>\\(\\mathfrak {gl}_n\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"69 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\imath $$ Hall algebras of weighted projective lines and quantum symmetric pairs II: injectivity\",\"authors\":\"Ming Lu, Shiquan Ruan\",\"doi\":\"10.1007/s00209-024-03528-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the morphism <span>\\\\(\\\\Omega \\\\)</span> from the <span>\\\\(\\\\imath \\\\)</span>quantum loop algebra <span>\\\\({}^{\\\\text {Dr}}\\\\widetilde{{{\\\\textbf{U}}}}^\\\\imath (L{\\\\mathfrak {g}})\\\\)</span> of split type to the <span>\\\\(\\\\imath \\\\)</span>Hall algebra of the weighted projective line is injective if <span>\\\\({\\\\mathfrak {g}}\\\\)</span> is of finite or affine type. As a byproduct, we use the whole <span>\\\\(\\\\imath \\\\)</span>Hall algebra of the cyclic quiver <span>\\\\(C_n\\\\)</span> to realize the <span>\\\\(\\\\imath \\\\)</span>quantum loop algebra of affine <span>\\\\(\\\\mathfrak {gl}_n\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03528-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03528-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
$$\imath $$ Hall algebras of weighted projective lines and quantum symmetric pairs II: injectivity
We show that the morphism \(\Omega \) from the \(\imath \)quantum loop algebra \({}^{\text {Dr}}\widetilde{{{\textbf{U}}}}^\imath (L{\mathfrak {g}})\) of split type to the \(\imath \)Hall algebra of the weighted projective line is injective if \({\mathfrak {g}}\) is of finite or affine type. As a byproduct, we use the whole \(\imath \)Hall algebra of the cyclic quiver \(C_n\) to realize the \(\imath \)quantum loop algebra of affine \(\mathfrak {gl}_n\).