{"title":"沉浸于萨萨克空间形式","authors":"A. Loi, G. Placini, M. Zedda","doi":"10.1007/s00209-024-03529-1","DOIUrl":null,"url":null,"abstract":"<p>We study immersions of Sasakian manifolds into finite and infinite dimensional Sasakian space forms. After proving Calabi’s rigidity results in the Sasakian setting, we characterise all homogeneous Sasakian manifolds which admit a (local) Sasakian immersion into a nonelliptic Sasakian space form. Moreover, we give a characterisation of homogeneous Sasakian manifolds which can be embedded into the standard sphere both in the compact and noncompact case.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immersions into Sasakian space forms\",\"authors\":\"A. Loi, G. Placini, M. Zedda\",\"doi\":\"10.1007/s00209-024-03529-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study immersions of Sasakian manifolds into finite and infinite dimensional Sasakian space forms. After proving Calabi’s rigidity results in the Sasakian setting, we characterise all homogeneous Sasakian manifolds which admit a (local) Sasakian immersion into a nonelliptic Sasakian space form. Moreover, we give a characterisation of homogeneous Sasakian manifolds which can be embedded into the standard sphere both in the compact and noncompact case.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03529-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03529-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study immersions of Sasakian manifolds into finite and infinite dimensional Sasakian space forms. After proving Calabi’s rigidity results in the Sasakian setting, we characterise all homogeneous Sasakian manifolds which admit a (local) Sasakian immersion into a nonelliptic Sasakian space form. Moreover, we give a characterisation of homogeneous Sasakian manifolds which can be embedded into the standard sphere both in the compact and noncompact case.