{"title":"三维奇异利玛窦流的非负利玛窦曲率极限的伪位置性和完备性","authors":"Albert Chau, Adam Martens","doi":"10.1007/s00209-024-03524-6","DOIUrl":null,"url":null,"abstract":"<p>Lai (Geom Topol 25:3629–3690, 2021) used singular Ricci flows, introduced by Kleiner and Lott (Acta Math 219(1):65–134, 2017), to construct a nonnegative Ricci curvature Ricci flow <i>g</i>(<i>t</i>) emerging from an arbitrary 3D complete noncompact Riemannian manifold <span>\\((M^3, g_0)\\)</span> with nonnegative Ricci curvature. We show <i>g</i>(<i>t</i>) is complete for positive times provided <span>\\(g_0\\)</span> satisfies a volume ratio lower bound that approaches zero at spatial infinity. Our proof combines a pseudolocality result of Lai (2021) for singular flows, together with a pseudolocality result of Hochard (Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, 2016. arXiv:1603.08726) and Simon and Topping (J Differ Geom 122(3):467–518, 2022) for nonsingular flows. We also show that the construction of complete nonnegative complex sectional curvature flows by Cabezas-Rivas and Wilking (J Eur Math Soc (JEMS) 17(12):3153–3194, 2015) can be adapted here to show <i>g</i>(<i>t</i>) is complete for positive times provided <span>\\(g_0\\)</span> is a compactly supported perturbation of a nonnegative sectional curvature metric.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudolocality and completeness for nonnegative Ricci curvature limits of 3D singular Ricci flows\",\"authors\":\"Albert Chau, Adam Martens\",\"doi\":\"10.1007/s00209-024-03524-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lai (Geom Topol 25:3629–3690, 2021) used singular Ricci flows, introduced by Kleiner and Lott (Acta Math 219(1):65–134, 2017), to construct a nonnegative Ricci curvature Ricci flow <i>g</i>(<i>t</i>) emerging from an arbitrary 3D complete noncompact Riemannian manifold <span>\\\\((M^3, g_0)\\\\)</span> with nonnegative Ricci curvature. We show <i>g</i>(<i>t</i>) is complete for positive times provided <span>\\\\(g_0\\\\)</span> satisfies a volume ratio lower bound that approaches zero at spatial infinity. Our proof combines a pseudolocality result of Lai (2021) for singular flows, together with a pseudolocality result of Hochard (Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, 2016. arXiv:1603.08726) and Simon and Topping (J Differ Geom 122(3):467–518, 2022) for nonsingular flows. We also show that the construction of complete nonnegative complex sectional curvature flows by Cabezas-Rivas and Wilking (J Eur Math Soc (JEMS) 17(12):3153–3194, 2015) can be adapted here to show <i>g</i>(<i>t</i>) is complete for positive times provided <span>\\\\(g_0\\\\)</span> is a compactly supported perturbation of a nonnegative sectional curvature metric.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03524-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03524-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Lai (Geom Topol 25:3629-3690, 2021)利用Kleiner和Lott (Acta Math 219(1):65-134, 2017)引入的奇异利玛窦流,构造了一个从任意三维完整非紧密黎曼流形\((M^3, g_0)\) 出现的非负利玛窦曲率利玛窦流g(t)。我们证明,只要 \(g_0\) 满足空间无穷大时趋近于零的体积比下限,g(t) 对于正时间就是完整的。我们的证明结合了 Lai (2021) 针对奇异流的伪位置性结果,以及 Hochard (Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, 2016. arXiv:1603.08726)和 Simon 与 Topping (J Differ Geom 122(3):467-518, 2022) 针对非奇异流的伪位置性结果。我们还证明,卡贝萨斯-里瓦斯和威尔金(J Eur Math Soc (JEMS) 17(12):3153-3194, 2015)对完整非负复截面曲率流的构造可以在此进行调整,以证明只要 \(g_0\) 是非负截面曲率度量的紧凑支撑扰动,g(t) 对于正时间就是完整的。
Pseudolocality and completeness for nonnegative Ricci curvature limits of 3D singular Ricci flows
Lai (Geom Topol 25:3629–3690, 2021) used singular Ricci flows, introduced by Kleiner and Lott (Acta Math 219(1):65–134, 2017), to construct a nonnegative Ricci curvature Ricci flow g(t) emerging from an arbitrary 3D complete noncompact Riemannian manifold \((M^3, g_0)\) with nonnegative Ricci curvature. We show g(t) is complete for positive times provided \(g_0\) satisfies a volume ratio lower bound that approaches zero at spatial infinity. Our proof combines a pseudolocality result of Lai (2021) for singular flows, together with a pseudolocality result of Hochard (Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, 2016. arXiv:1603.08726) and Simon and Topping (J Differ Geom 122(3):467–518, 2022) for nonsingular flows. We also show that the construction of complete nonnegative complex sectional curvature flows by Cabezas-Rivas and Wilking (J Eur Math Soc (JEMS) 17(12):3153–3194, 2015) can be adapted here to show g(t) is complete for positive times provided \(g_0\) is a compactly supported perturbation of a nonnegative sectional curvature metric.